Abstract
Quantifying predictive uncertainty of deep semantic segmentation networks is essential in safety-critical tasks. In applications like autonomous driving, where video data is available, convolutional long short-term memory networks are capable of not only providing semantic segmentations but also predicting the segmentations of the next timesteps. These models use cell states to broadcast information from previous data by taking a time series of inputs to predict one or even further steps into the future. We present a temporal postprocessing method which estimates the prediction performance of convolutional long short-term memory networks by either predicting the intersection over union of predicted and ground truth segments or classifying between intersection over union being equal to zero or greater than zero. To this end, we create temporal cell state-based input metrics per segment and investigate different models for the estimation of the predictive quality based on these metrics. We further study the influence of the number of considered cell states for the proposed metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 983–990 (2009). https://doi.org/10.1109/CVPR.2009.5206737
Belagiannis, V., Schubert, F., Navab, N., Ilic, S.: Segmentation based particle filtering for real-time 2D object tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 842–855. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_60
Bergmann, P., Meinhardt, T., Leal-Taixé, L.: Tracking without bells and whistles. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 941–951 (2019). https://doi.org/10.1109/ICCV.2019.00103
Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1613–1622. PMLR (2015). https://proceedings.mlr.press/v37/blundell15.html
Duvenaud, D., Maclaurin, D., Adams, R.: Early stopping as nonparametric variational inference. In: Gretton, A., Robert, C.C. (eds.) Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 51, pp. 1070–1077. PMLR (2016). https://proceedings.mlr.press/v51/duvenaud16.html
Erdem, C.E., Sankur, B., Tekalp, A.M.: Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 13(7), 937–951 (2004). https://doi.org/10.1109/TIP.2004.828427
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1050–1059. PMLR (2016). https://proceedings.mlr.press/v48/gal16.html
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1321–1330. PMLR (2017). https://proceedings.mlr.press/v70/guo17a.html
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Hornauer, J., Belagiannis, V.: Gradient-based uncertainty for monocular depth estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision, ECCV 2022. LNCS, vol. 13680, pp. 613–630. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_35
Huang, P.-Y., Hsu, W.-T., Chiu, C.-Y., Wu, T.-F., Sun, M.: Efficient uncertainty estimation for semantic segmentation in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 536–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_32
Hurtado, J.V., Mohan, R., Burgard, W., Valada, A.: MOPT: multi-object panoptic tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Scalability in Autonomous Driving (2020)
Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)
Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Video panoptic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9856–9865 (2020). https://doi.org/10.1109/CVPR42600.2020.00988
Kull, M., Perello Nieto, M., Kängsepp, M., Silva Filho, T., Song, H., Flach, P.: Beyond temperature scaling: obtaining well-calibrated multi-class probabilities with dirichlet calibration. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper_files/paper/2019/file/8ca01ea920679a0fe3728441494041b9-Paper.pdf
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
Maag, K., Rottmann, M., Gottschalk, H.: Time-dynamic estimates of the reliability of deep semantic segmentation networks. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 502–509 (2020). https://doi.org/10.1109/ICTAI50040.2020.00084
MacKay, D.J.C.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992). https://doi.org/10.1162/neco.1992.4.3.448
Minderer, M., et al.: Revisiting the calibration of modern neural networks. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 15682–15694. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/8420d359404024567b5aefda1231af24-Paper.pdf
Peng, J., et al.: Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 145–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_9
Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2232–2241 (2017). https://doi.org/10.1109/ICCV.2017.243
Riedlinger, T., Rottmann, M., Schubert, M., Gottschalk, H.: Gradient-based quantification of epistemic uncertainty for deep object detectors. In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3910–3920 (2023). https://doi.org/10.1109/WACV56688.2023.00391
Rottmann, M., et al.: Prediction error meta classification in semantic segmentation: detection via aggregated dispersion measures of softmax probabilities. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–9 (2020). https://doi.org/10.1109/IJCNN48605.2020.9206659
Rottmann, M., Reese, M.: Automated detection of label errors in semantic segmentation datasets via deep learning and uncertainty quantification. In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3213–3222 (2023). https://doi.org/10.1109/WACV56688.2023.00323
Rottmann, M., Schubert, M.: Uncertainty measures and prediction quality rating for the semantic segmentation of nested multi resolution street scene images. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1361–1369 (2019). https://doi.org/10.1109/CVPRW.2019.00176
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, NIPS 2015, vol. 1, pp. 802–810. MIT Press (2015)
Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1328–1338 (2019). https://doi.org/10.1109/CVPR.2019.00142
Wickstrøm, K., Kampffmeyer, M., Jenssen, R.: Uncertainty modeling and interpretability in convolutional neural networks for polyp segmentation. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 (2018). https://doi.org/10.1109/MLSP.2018.8516998
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclaimer
The results, opinions and conclusions expressed in this publication are not necessarily those of Volkswagen Aktiengesellschaft.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fieback, L., Dash, B., Spiegelberg, J., Gottschalk, H. (2023). Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks. In: Ifrim, G., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2023. Lecture Notes in Computer Science(), vol 14343. Springer, Cham. https://doi.org/10.1007/978-3-031-49896-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-49896-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49895-4
Online ISBN: 978-3-031-49896-1
eBook Packages: Computer ScienceComputer Science (R0)