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Abstract. The state-of-the-art in time series classification has come a
long way, from the 1NN-DTW algorithm to the ROCKET family of clas-
sifiers. However, in the current fast-paced development of new classifiers,
taking a step back and performing simple baseline checks is essential.
These checks are often overlooked, as researchers are focused on estab-
lishing new state-of-the-art results, developing scalable algorithms, and
making models explainable. Nevertheless, there are many datasets that
look like time series at first glance, but classic algorithms such as tabular
methods with no time ordering may perform better on such problems.
For example, for spectroscopy datasets, tabular methods tend to signifi-
cantly outperform recent time series methods. In this study, we compare
the performance of tabular models using classic machine learning ap-
proaches (e.g., Ridge, LDA, RandomForest) with the ROCKET family
of classifiers (e.g., Rocket, MiniRocket, MultiRocket). Tabular models
are simple and very efficient, while the ROCKET family of classifiers are
more complex and have state-of-the-art accuracy and efficiency among
recent time series classifiers. We find that tabular models outperform the
ROCKET family of classifiers on approximately 19% of univariate and
28% of multivariate datasets in the UCR/UEA benchmark and achieve
accuracy within 10 percentage points on about 50% of datasets. Our re-
sults suggest that it is important to consider simple tabular models as
baselines when developing time series classifiers. These models are very
fast, can be as effective as more complex methods and may be easier to
understand and deploy.
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1 Introduction

Time series classification is a challenging task that has attracted significant re-
search interest recently. The ever-evolving computational capabilities and abun-
dant applications and use cases have led to the development of a wide range of
time series classification methods, from simple distance-based methods (1-NN-
DTW [1]) to complex deep learning models (Inception Time [2]).

Most of the research in time series classification is focused on establishing
state-of-the-art results, developing scalable algorithms, and making models ex-
plainable. However, in this quest, it is often possible to forget the first principle
of research, which is to compare with existing simpler methods.
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Historically, there have been many instances where traditional models have
outperformed deep learning methods on some tasks. For example, a recent study
[3] showed that linear models can be more effective than deep learning networks
for forecasting. Similarly, the work of [4] showed that linear models can outper-
form other complex models for classification tasks in spectroscopy data. How-
ever, there is less empirical work investigating the performance of classic tabular
models on time series classification tasks.

In this study, we take a step back from the pursuit of providing yet another
state-of-the-art method and perform some simple sanity checks, which are often
missed. We compare the performance of tabular models with the ROCKET
[5,6,7] family of classifiers, which are currently considered state-of-the-art for
time series classification. In this paper, the main contributions are:

– We empirically compared tabular and time series methods on the established
UCR/UEA benchmarks for univariate and multivariate time series classifi-
cation.

– We analysed the accuracy-time tradeoffs for all the methods on both bench-
marks and found that on about 50% of datasets in both benchmarks, the
tabular methods perform within 10 percentage points accuracy of state-of-
the-art time series classification methods, while being two orders of magni-
tude faster.

– We discussed the performance of tabular versus time series methods for dif-
ferent data and problem types and the potential implications for how the
very popular UCR/UEA benchmarks are formed and used by the commu-
nity. In particular, if tabular methods significantly outperform time series
methods on some problem types, we raise the question of whether these
datasets should be included in a time series benchmark.

2 Related Work

The UCR and UEA benchmarks. Univariate Time Series Classification
(UTSC). State-of-the-art UTS classifiers are classifiers that have been shown
to be the most accurate methods on the UCR/UEA benchmark. The most no-
table ones are ROCKET [5] and its variants (MiniROCKET, MultiROCKET
and HYDRA [8]), due to their high accuracy and efficiency. These classifiers fol-
low a two-step approach: transforming the time series into tabular features and
classifying these transformations using linear models such as logistic regression.
While deep learning methods (e.g., FCN, ResNet, InceptionTime [2]) or ensem-
bles (e.g., HIVE-COTE [9], TDE [10]) are also as accurate, they often demand
significantly more computing resources (time, CPU, GPU, etc.). Other notable
classifiers include symbolic-classifiers such as WEASEL [11] and MrSQM [12]
and shapelet-classifiers such as RDST [13]. The UCR/UEA time series archive
is a public collection of time series datasets that has been used extensively as
the unified benchmark by researchers in this area. The archive is the result of a
massive collaborative effort lead by research groups from the University Califor-
nia Riverside (UCR) and the University of East Anglia (UEA), hence the name
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of the benchmark. Starting with 85 univariate datasets in 2015, the archive was
expanded to 128 datasets in 2018. The expansion also introduced a classification
benchmark for multivariate time series which includes 30 datasets. The dedi-
cated website1 for the archive contains not only the downloadable datasets but
also pointers to code, publications, and other information that can be useful
to any interested party. Without a doubt, the archive is a major resource that
pushes forward research in TSC. However, while extremely useful for providing
an overview and comparing against existing work, it potentially creates a pit-
fall where new works only focus on ”beating the benchmark” and neglect what
makes a classifier useful in real-life applications.

Multivariate Time Series Classification (MTSC). In general, it can
be said that the MTSC literature is less developed when compared to UTSC.
The benchmark for MTSC was introduced later with fewer datasets. Most state-
of-the-art MTSC methods are UTSC methods that are adapted for MTS data.
The most straightforward approach is to learn from each channel independently
(e.g., HIVE-COTE, WEASEL-MUSE [14]). On the other hand, some classifiers
actually utilize channel dependency, and thus are called bespoke MTS classifiers.
For example, the multivariate variants of ROCKET (and MiniROCKET, Mul-
tiROCKET) replace the 1D kernels with 2D kernels to produce multi-channel
dependent features (see [7,6] for details).

Tabular Methods. Classic machine learning models such as Random For-
est, Logistic Regression, Linear Regression, seem to have been largely ignored
in recent time series literature. Such methods often assume independence be-
tween values at different time points and thus are deemed unsuitable for time
series data. The work in [15] employs tabular models, however, the models are
trained on transformed data after applying techniques such as PCA, Spectral
approaches and auto-correlation. Nonetheless, outside of the time series litera-
ture, these methods are still favourable choices in some communities. In par-
ticular, the work of [4,16] investigated several approaches for modelling milk
spectroscopy data and found that tabular methods significantly outperformed
time series methods. While these datasets are not inherently time series data,
spectroscopy data have been part of the UCR/UEA benchmark since its incep-
tion and have been widely accepted by the community as time series data. This
finding suggests that not all datasets in the benchmark are suitable for time
series methods. We further investigate this issue in the next sections.

3 Background

A time series is a sequence of numbers representing some measurements over
time. For example, a time series could represent a person’s heartbeat variation
on a 30-minute morning run. Each value in a time series usually has significance
with respect to the previous and next values.

A typical mathematical representation of time series is T : {x0, x1, x2, . . . xn}
where x ∈ ℜ and n is the length of the time series. When we assign a discrete

1 http://www.timeseriesclassification.com

http://www.timeseriesclassification.com
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label to the time series, we can perform time series classification. We discuss
two types of time series tasks in this paper, i.e., univariate time series classifica-
tion (UTSC) and multivariate time series classification (MTSC). In univariate
time series classification, data is recorded from a single source, meaning only one
observed variable exists. On the other hand, multivariate time series classifica-
tion involves recording data from multiple sources, resulting in the presence of
multiple observed variables. A mathematical representation of multivariate time
series can take the form:

T : {< x0
0, x

0
1, . . . x

0
n >< x1

0, x
1
1, . . . x

1
n > . . . < xm−1

0 , xm−1
1 , . . . xm−1

n >}
where m is the number of channels. If the time series is univariate, m = 1. It

is common in some applications to convert multivariate time series to univariate
time series by concatenating all the channels into a single univariate time series.
After this transformation, univariate classifiers can be trained with this data.

Tabular data is the most ubiquitous data type. It is a data structure that
organizes data into rows and columns. Each row represents a single record, and
each column represents a single attribute of that record. It has no concept of
temporality. This means that the previous value has no impact on the current
value. A time series can be considered a tabular vector and used as input to a
tabular method, e.g., linear regression.

4 Experiments

4.1 Datasets

The UEA/UCR [17] benchmark datasets are mostly used in the empirical evalu-
ation and comparison of various algorithms. Since the benchmark contains both
univariate and multivariate datasets, it is popular for testing new algorithms
on. Table 8 and 9 in the appendix provide the data dictionary for both types of
datasets. As it is common in recent time series literature, we run experiments
on 109 univariate datasets and 25 equal-length multivariate datasets. We make
our code available on github2.

4.2 Univariate Time Series Classification

Before comparing tabular versus time-series models, we compared a few popular
methods within each group separately.

Tabular Methods Results. For tabular methods we select three linear
methods known for their efficiency and effectiveness in real-world applications [4],
as well as Random Forest to have an effective non-linear classifier. We run these
methods using the sklearn implementation3 with default parameters. Later in
the paper we also discuss parameter tuning and its impact on accuracy and run-
time. In Figure 1, we compare the accuracy of four tabular models on univariate
datasets: Random Forest, Logistic Regression, Ridge Regression (RidgeCV) and

2 https://github.com/mlgig/TabularModelsforTSC
3 https://scikit-learn.org/stable/supervised_learning.html

https://github.com/mlgig/TabularModelsforTSC
https://scikit-learn.org/stable/supervised_learning.html
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Latent Dirichlet Analysis (LDA). The critical difference diagram [18] captures
the average accuracy rank over all the datasets. The accuracy gain is evaluated
using a Wilcoxon signed-rank test with Holm correction and visualised with the
critical difference (CD) diagram with significance value (α) = 0.05. The figure
illustrates Random Forest significantly outperforms the other three models and
Logistic Regression outperforms the other linear models Table 1 illustrates the
mean accuracy and total training and test computation time in minutes. The
tabular results correspond to the tabular CD diagram, where Random Forest is
the best classifier.

1 2 3 4

RandomForest
LogReg

RidgeCV
LDA

Fig. 1. Accuracy comparison of tabular methods on UTSC datasets.

Table 1.Mean accuracy and total computation time taken by tabular models on UTSC
datasets.

Mean Accuracy Total Time (minutes)

RandomForest 0.74 0.886
LogReg 0.69 0.31
RidgeCV 0.67 0.09
LDA 0.63 0.09

1 2 3

Multirocket
Minirocket

Rocket

Fig. 2. Accuracy comparison of time-series methods on UTSC datasets.

Time Series Methods Results. Similarly, in Figure 2 and Table 2, we
compare the accuracy of three time series classification models: Multirocket,
MiniRocket, and Rocket. We use the implementation in the aeon-toolkit library4

4 https://www.aeon-toolkit.org/en/latest/api_reference/classification.

html

https://www.aeon-toolkit.org/en/latest/api_reference/classification.html
https://www.aeon-toolkit.org/en/latest/api_reference/classification.html
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Table 2. Mean accuracy and total computation time taken by time-series models on
UTSC datasets.

Mean Accuracy Total Time (minutes)

Minirocket 0.86 34.56
Multirocket 0.86 73.46

Rocket 0.85 158.76

2 3 4 5 6

Multirocket
Minirocket

Rocket
RandomForest

LogReg
RidgeCV
LDA

Fig. 3. Accuracy comparison of tabular and time series models on UTSC datasets.

with default parameters. From the critical difference diagram (Figure 2) we note
that MultiRocket is significantly more accurate than MiniRocket and Rocket.

Time Series Methods vs Tabular Methods. In Figure 3, we compare the
accuracy of time-series and tabular models. We can see that the time-series
models have a higher mean accuracy rank than the tabular models. Multirocket
is significantly more accurate than all other models, and Random Forest is the
closest tabular model to the time-series models.

Detailed Analysis. Figure 3 provides a summary overview of the performance
of classifiers using their average accuracy ranking across the datasets analysed.
Average behaviour with respect to accuracy or rank is a common and useful sum-
mary to get an overview of the performance of multiple classifiers over multiple
datasets. However, it is crucial to examine the performance of models at a finer
level to understand the difference in behaviour between tabular and time-series
models.

In Figure 4, we illustrate the accuracy of tabular and time series models on
each dataset, focusing on comparing the best-performing tabular with the best-
performing time series model. The plot is divided into three distinct regions:
green, grey, and red.

– The green region illustrates the datasets where the tabular models outper-
form the time series models or where both models achieve the same accuracy.

– The grey region represents datasets where the two models have performance
within a fixed threshold. It is crucial to consider the accuracy-time trade-
off in this region when deciding the better model. Datasets in this region
are highlighted when the difference between the best-performing time-series
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model and the best-performing tabular model ranges from 1 to 9 percentage
points.

– The red region represents the datasets where time series models outperform
tabular models. The time series models in these datasets are at least 10
percentage points better than tabular models.

For the UEA benchmark, surprisingly, 19.2% of the datasets performed better
with tabular models (green region), 31.1% performed within 10 percentage points
with both tabular and time series models (grey region), and 49.5% performed
better than 10 percentage points with time series models (red region).

The above numbers imply that on about 19% of the benchmark, there are
only weak temporal patterns, and tabular methods that disregard time ordering
are very competitive when compared with time series methods. As a result,
for many of those datasets in the green and grey region, using a complex time
series model would be like using a sledgehammer to crack a nut. We of course
acknowledge that time series methods work very well for the datasets in the
red region, but these account for slightly less than half of the benchmark. We
also acknowledge that the Rocket algorithms have been tested outside of this
benchmark with good results in many real time series applications [19,20,21,22].
The question remains though: should we include the datasets in the green and
grey areas into a time series benchmark at all, given that tabular methods have
similar accuracy to the best time series methods on those datasets.

Computation Time Analysis. Traditionally, tabular models are known for
their computational speed. This is also evident from Tables 1 and 2, which show
that tabular models are an order of magnitude faster than time series models.
Figure 4 illustrates the various regions for accuracy, but it is worth highlighting
that tabular models in the green and grey regions are faster and almost as
accurate, or even more accurate than time series methods.

Figure 5 shows the tradeoff between the mean accuracy and total computa-
tion time for the various time-series and tabular models in grey region datasets.
Multirocket and Random Forest are the most accurate models among time series
and tabular models, respectively. The difference in accuracy between Multirocket
and Random Forest is approximately 5 percentage points. However, Multirocket
takes an average of 30 minutes longer to train.

Domain-wise Analysis. Table 3 shows the mean accuracy of different clas-
sifiers on datasets from various domains (as annotated by the meta-data in
UCR/UEA). The benchmark is highly dominated by three domains: Image, Sen-
sor, and Motion. About 63% of the benchmark comprises these three domains
out of a total of 13 domains in the benchmark.
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Fig. 4. Accuracy comparison of the best time series model with the best tabular model
on univariate time series datasets. Red circles represent the tabular models, and blue
circles represent the time series models. Each marker shows the maximum accuracy
achieved by the tabular models versus the time series models.
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Fig. 5. Accuracy-Time tradeoff for datasets in the grey region shown in Figure 4.
We observe a mean accuracy difference of about 5 percentage points, but at least an
order of magnitude difference in computation time, between tabular and time series
methods.

Table 3. Mean accuracy of classifiers by problem types on UCR univariate datasets.

Tabular Models Time Series Models

Domain (#datasets) RidgeCV LDA LogReg RandomForest Rocket Minirocket Multirocket

Image(31) 0.66 0.62 0.71 0.75 0.85 0.85 0.85
Sensor(20) 0.73 0.69 0.72 0.76 0.86 0.86 0.87
Motion(17) 0.58 0.46 0.58 0.70 0.84 0.84 0.85
Device(8) 0.48 0.44 0.48 0.62 0.76 0.74 0.77

Simulated(8) 0.78 0.82 0.81 0.88 0.99 0.98 0.99
Spectro(8) 0.86 0.90 0.86 0.82 0.84 0.86 0.86
ECG(4) 0.92 0.84 0.92 0.82 0.97 0.97 0.97

Spectrum(4) 0.75 0.67 0.74 0.67 0.83 0.82 0.88
Hemodynamics(3) 0.05 0.16 0.12 0.13 0.66 0.94 0.81

EOG(2) 0.3 0.28 0.37 0.43 0.59 0.57 0.60
EPG(2) 0.82 1.00 1.00 1.00 0.99 1.00 1.00
Power(1) 0.98 0.73 0.99 1.00 0.92 0.99 0.98
Traffic(1) 0.98 0.95 0.98 0.98 0.98 0.98 0.98

As expected, with regard to average accuracy in a specific domain, as also
shown in Figure 3, time series models performed better than tabular models
in most of the domains. However, we note that the tabular models performed
especially well in the Spectro domain. This could be because the Spectro domain
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does not have strong temporal features. Also, as we have seen in Figure 4, average
behaviour can be misleading and we need to look at the accuracy on individual
datasets to get a good idea of accuracy behaviour across the entire benchmark
or specific domains.

4.3 Multivariate Time Series Classification

In addition to our analysis of univariate time series datasets, we also conducted
an analysis on multivariate time series datasets. The UEA/UCR benchmark
dataset we utilized for this analysis consisted of 26 datasets. However, to ensure
consistency and comparability among the models, we narrowed down our focus
to the 25 datasets that all models could run on. We filtered the datasets based
on equal length, and one dataset (Pen Digits) was removed due to Minirocket,
which cannot run on datasets with lengths less than 8.

Data Preprocessing: Unlike univariate time series, which have data from a
single channel, multivariate time series data have multiple channels. To convert
this data into a format that a tabular model can process, we first standardize
each channel’s data and then concatenate the data across all channels.

Tabular Methods Results. After preprocessing the data, we followed a
similar approach to our univariate analysis. We selected the same tabular models:
Random Forest, LDA, Logistic Regression, and RidgeCV. The critical difference
diagram (Figure 6) illustrates that Random Forest performed significantly better
than the other three models, and Logistic Regression outperformed the other two
linear models.

1 2 3 4

RandomForest

LogReg

RidgeCV

LDA

Fig. 6. Accuracy comparison of tabular methods on MTSC datasets.

Table 4 shows the total time taken by tabular models and their correspond-
ing mean accuracy. The table corroborates the results of the critical difference
diagram, which showed that Random Forest is the most accurate tabular model,
closely followed by LogisticRegression and RidgeCV. RidgeCV is also the most
time-efficient method.

Time Series Methods Results. Similar to the tabular methods, we ran the
multivariate time series methods, namely Minirocket, Multirocket, and Rocket,
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Table 4. Mean accuracy and total computation time taken by tabular models on
MTSC datasets.

Mean Accuracy Total Time (minutes)

RandomForest 0.61 6.40
LogisticRegression 0.59 6.20

RidgeCV 0.56 5.27
LDA 0.52 6.70

on the MTSC datasets. Since the implemented algorithm works well with mul-
tivariate time series, there was no need to preprocess the data in this case.

Figure 7 and Table 5 illustrate the performance of time series methods on the
benchmark datasets. Both the figure and table show that Minirocket outperforms
the other two classifiers. Additionally, Minirocket is also the fastest method
among the three methods.

1 2 3

Minirocket

Rocket

Multirocket

Fig. 7. Accuracy comparison of time-series methods on MTSC datasets.

Table 5. Mean accuracy and total computation time taken by time series models on
MTSC datasets.

Mean Accuracy Total Time (minutes)

Minirocket 0.71 49.33
Multirocket 0.70 67.10

Rocket 0.70 129.05

Time Series Methods vs Tabular Methods. Finally, we compared tabular
and time series models, as shown in Figure 8. As expected, the time series models
outperformed the tabular models in terms of average accuracy. However, we
conducted a more detailed analysis to investigate the reasons for this difference.
We discuss our findings below.
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2 3 4 5 6

Rocket
Minirocket

Multirocket
RandomForest

LogReg
RidgeCV

LDA

Fig. 8. Accuracy comparison time-series and tabular methods on MTSC datasets.

Fig. 9. Accuracy comparison of time series models with tabular models on multivariate
time series datasets. Red circles represent tabular models, and blue circles represent
time series models. Each marker shows the maximum accuracy achieved by the tabular
models versus the time series models. Detailed results are provided with the code.

Figure 9 shows the difference in performance between the best-performing
tabular model and the best-performing time series model. The performance of
each model is highlighted in a different region, as defined above in Section 4.2.
Approximately 28 percent of the datasets are represented in each green and grey
region (56 percent total), indicating that the tabular model performs better or
within 10 percentage points in these cases. Another 44 percent of the datasets
fall within the red region, indicating that the time series models outperform the
tabular models in those instances.

Computation Time Analysis For the same reasons as for the univariate
time series classification task, we perform the time-accuracy tradeoff analysis
for multivariate time series classification. Figure 10 illustrates the performance
of various time-series and tabular models on the datasets in the grey region of
Figure 9. Rocket is the most accurate among time-series models, and Random
Forest is the most accurate model among tabular models. The difference between
the mean accuracy of Rocket and the mean accuracy of Random Forest is about
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Fig. 10. Accuracy-Time tradeoff for datasets in the grey region in Figure 9.

5 percentage point, while the difference in total computation time is about 4
minutes.

In addition to considering the trade-off between time and accuracy, we also
analyzed the domain-wise performance of tabular and time series models in
multivariate datasets in Table 6. The datasets consisted of 6 domains, with 60%
of the data coming from two domains (HAR and EEG). Time series models
generally performed well, but tabular models performed better in the ECG and
EEG/MEG domains.

Table 6. Mean accuracy of classifiers by problem types on UCR multivariate datasets.

Tabular Models Time Series Models

Domain (#datasets) RidgeCV LDA LogReg RandomForest Rocket Minirocket Multirocket

HAR(9) 0.67 0.53 0.74 0.78 0.92 0.94 0.94
EEG/MEG(6) 0.55 0.54 0.58 0.50 0.55 0.55 0.54

Audio Spectra(3) 0.18 0.16 0.18 0.18 0.46 0.70 0.52
Other(3) 0.52 0.58 0.65 0.74 0.84 0.83 0.80
ECG(2) 0.46 0.20 0.46 0.40 0.27 0.26 0.24
Motion(2) 0.59 0.65 0.65 0.72 0.99 1.00 1.00
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4.4 Discussion and Lessons Learned

– Redefining baselines: Most previous research has considered 1NN-DTW
as the baseline for time series classification. This is a reasonable choice, as
1NN-DTW is a simple and effective algorithm that is often competitive with
more complex time series methods. However, our study suggests that simple
tabular models can perform significantly well on some datasets, even when
compared to recent state-of-the-art TSC algorithms. This finding suggests
that there is a need to rethink how we do baseline comparisons for time
series classification.

– Not all that looks time series is a time series: Our study demonstrated
that tabular methods outperformed time series methods on some domains,
specifically Spectro (Table 3), EEG or ECG (Table 6). This could be because
the Spectro datasets did not contain strong temporal information. Either
way, we need to ask whether it makes sense to have these datasets in a time
series classification benchmark.

– Considering trade-offs: In our study we observed that time series models
outperformed tabular models by a few percentage points on the red datasets.
However, tabular models outperformed time series methods in the green
datasets and were significantly faster to train and test. Therefore, especially
for datasets in the grey region, where tabular and time series methods are
close in accuracy, we recommend carefully considering whether tabular mod-
els are preferable to time series methods, especially if time is a constraint.

4.5 Improving Tabular Models

Since the above-mentioned experiments were conducted using the default hyper-
parameters, we wanted to investigate whether we could improve the performance
of tabular models by tuning the hyperparameters. To do this, we performed hy-
perparameter tuning on Random Forest and Logistic Regression, since they were
the best performing models in both univariate (Figure 5) and multivariate (Fig-
ure 10) experiments.

We performed hyperparameter tuning with a combination of scaling and
regularization. Table 7 shows the results of the hyperparameter tuning and the
improvement for the best tabular model. We found that hyperparameter tuning
can increase accuracy, but it also takes a significant amount of time to find the
best hyperparameters.

Table 7. Improvement on accuracy on univariate and multivariate datasets and mean
computation time in minutes.

Mean Accuracy Mean Computation Time (minutes)

Before After Before After

Univariate 0.86 0.87 0.47 13.41
Multivariate 0.74 0.75 0.91 43.10
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5 Conclusion

In this study, we compared the performance of tabular models with state-of-the-
art time series models on the UCR/UEA univariate and multivariate time series
classification benchmarks. We found that tabular models performed surprisingly
well on many datasets, outperforming the recent Multirocket classifier on a sig-
nificant percentage of the datasets. On many other datasets, the accuracy was
comparable, but tabular models were more efficient in terms of computation
time. Overall, in about half of the datasets in either the univariate or the multi-
variate benchmarks, tabular methods were within 10 percentage points accuracy
of the time series methods.

Our findings suggest that tabular models should be considered as baselines
for evaluating improvements in time series classifiers, and even for considering
whether a dataset should be included in the time series classification benchmarks.
Furthermore, tabular methods can be a viable alternative to time series models
for some classification tasks. Tabular models are easier to train and deploy,
and they are more efficient in terms of computation time. The performance of
tabular models does vary depending on the characteristics of the dataset. In
future work, we plan to further investigate the factors that contribute to the
performance of tabular models on time series data, and include more tabular
models and parameter tuning.
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Appendix

Table 8. Data dictionary for Multivariate time series classification.

Domain Datasets T
ra
in

S
iz
e

T
es
t
S
iz
e

#
C
h
a
n
n
el
s

T
S
-l
en

#
C
la
ss
es

Audio Spectra DuckDuckGeese 50 50 1345 270 5
Other PEMS-SF 267 173 963 144 7
EEG/MEG FaceDetection 5890 3524 144 62 2
EEG/MEG MotorImagery 278 100 64 3000 2
Audio Spectra Heartbeat 204 205 61 405 2
EEG/MEG FingerMovements 316 100 28 50 2
Human Activity Recogntion NATOPS 180 180 24 51 6
Audio Spectra PhonemeSpectra 3315 3353 11 217 39
EEG/MEG HandMovementDirection 160 74 10 400 4
Motion ArticularyWordRecognition 275 300 9 144 25
EEG/MEG SelfRegulationSCP2 200 180 7 1152 2
EEG/MEG SelfRegulationSCP1 268 293 6 896 2
Human Activity Recogntion BasicMotions 40 40 6 100 4
Human Activity Recogntion Cricket 108 72 6 1197 12
Human Activity Recogntion EigenWorms 128 131 6 17984 5
Human Activity Recogntion LSST 2459 2466 6 36 14
Human Activity Recogntion RacketSports 151 152 6 30 4
ECG StandWalkJump 12 15 4 2500 3
Human Activity Recogntion ERing 30 270 4 65 6
Human Activity Recogntion Handwriting 150 850 3 152 26
Human Activity Recogntion UWaveGestureLibrary 120 320 3 315 8
Motion Epilepsy 137 138 3 206 4
Other EthanolConcentration 261 263 3 1751 4
ECG AtrialFibrillation 15 15 2 640 3
Motion PenDigits 7494 3498 2 8 10
Other Libras 180 180 2 45 15

Table 9: Data dictionary for Univariate time series classification.

Data T
ra
in

S
iz
e

T
es
t
S
iz
e

T
S
-L
en

#
C
la
ss
es

D
om

ai
n

ACSF1 100 100 1460 10 DEVICE
Adiac 390 391 176 37 IMAGE
ArrowHead 36 175 251 3 IMAGE
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Beef 30 30 470 5 SPECTRO
BeetleFly 20 20 512 2 IMAGE
BirdChicken 20 20 512 2 IMAGE
BME 30 150 128 3 SIMULATED
Car 60 60 577 4 SENSOR
CBF 30 900 128 3 SIMULATED
Chinatown 20 345 24 2 Traffic
ChlorineConcentration 467 3840 166 3 SIMULATED
CinCECGTorso 40 1380 1639 4 ECG
Coffee 28 28 286 2 SPECTRO
Computers 250 250 720 2 DEVICE
CricketX 390 390 300 12 MOTION
CricketY 390 390 300 12 MOTION
CricketZ 390 390 300 12 MOTION
Crop 7200 16800 46 24 IMAGE
DiatomSizeReduction 16 306 345 4 IMAGE
DistalPhalanxOutlineAgeGroup 400 139 80 3 IMAGE
DistalPhalanxOutlineCorrect 600 276 80 2 IMAGE
DistalPhalanxTW 400 139 80 6 IMAGE
Earthquakes 322 139 512 2 SENSOR
ECG200 100 100 96 2 ECG
ECG5000 500 4500 140 5 ECG
ECGFiveDays 23 861 136 2 ECG
ElectricDevices 8926 7711 96 7 DEVICE
EOGHorizontalSignal 362 362 1250 12 EOG
EOGVerticalSignal 362 362 1250 12 EOG
EthanolLevel 504 500 1751 4 SPECTRO
FaceAll 560 1690 131 14 IMAGE
FaceFour 24 88 350 4 IMAGE
FacesUCR 200 2050 131 14 IMAGE
FiftyWords 450 455 270 50 IMAGE
Fish 175 175 463 7 IMAGE
FordA 3601 1320 500 2 SENSOR
FordB 3636 810 500 2 SENSOR
FreezerRegularTrain 150 2850 301 2 SENSOR
FreezerSmallTrain 28 2850 301 2 SENSOR
GunPoint 50 150 150 2 MOTION
GunPointAgeSpan 135 316 150 2 MOTION
GunPointMaleVersusFemale 135 316 150 2 MOTION
GunPointOldVersusYoung 135 316 150 2 MOTION
Ham 109 105 431 2 SPECTRO
Haptics 155 308 1092 5 MOTION
Herring 64 64 512 2 IMAGE
HouseTwenty 34 101 3000 2 DEVICE
InlineSkate 100 550 1882 7 MOTION
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InsectEPGRegularTrain 62 249 601 3 EPG
InsectEPGSmallTrain 17 249 601 3 EPG
ItalyPowerDemand 67 1029 24 2 SENSOR
LargeKitchenAppliances 375 375 720 3 DEVICE
Lightning2 60 61 637 2 SENSOR
Lightning7 70 73 319 7 SENSOR
Mallat 55 2345 1024 8 SIMULATED
Meat 60 60 448 3 SPECTRO
MedicalImages 381 760 99 10 IMAGE
MiddlePhalanxOutlineAgeGroup 400 154 80 3 IMAGE
MiddlePhalanxOutlineCorrect 600 291 80 2 IMAGE
MiddlePhalanxTW 399 154 80 6 IMAGE
MixedShapes 500 2425 1024 5 IMAGE
MixedShapesSmallTrain 100 2425 1024 5 IMAGE
MoteStrain 20 1252 84 2 SENSOR
OliveOil 30 30 570 4 SPECTRO
OSULeaf 200 242 427 6 IMAGE
PhalangesOutlinesCorrect 1800 858 80 2 IMAGE
Phoneme 214 1896 1024 39 SOUND
PigAirwayPressure 104 208 2000 52 HEMODYNAMICS
PigArtPressure 104 208 2000 52 HEMODYNAMICS
PigCVP 104 208 2000 52 HEMODYNAMICS
Plane 105 105 144 7 SENSOR
PowerCons 180 180 144 2 DEVICE
ProximalPhalanxOutlineAgeGroup 400 205 80 3 IMAGE
ProximalPhalanxOutlineCorrect 600 291 80 2 IMAGE
ProximalPhalanxTW 400 205 80 6 IMAGE
RefrigerationDevices 375 375 720 3 DEVICE
Rock 20 50 2844 4 SPECTRO
ScreenType 375 375 720 3 DEVICE
SemgHandGenderCh2 300 600 1500 2 SPECTRO
SemgHandMovementCh2 450 450 1500 6 SPECTRO
SemgHandSubjectCh2 450 450 1500 5 SPECTRO
ShapeletSim 20 180 500 2 SIMULATED
ShapesAll 600 600 512 60 IMAGE
SmallKitchenAppliances 375 375 720 3 DEVICE
SmoothSubspace 150 150 15 3 SIMULATED
SonyAIBORobotSurface1 20 601 70 2 SENSOR
SonyAIBORobotSurface2 27 953 65 2 SENSOR
StarLightCurves 1000 8236 1024 3 SENSOR
Strawberry 613 370 235 2 SPECTRO
SwedishLeaf 500 625 128 15 IMAGE
Symbols 25 995 398 6 IMAGE
SyntheticControl 300 300 60 6 SIMULATED
ToeSegmentation1 40 228 277 2 MOTION
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ToeSegmentation2 36 130 343 2 MOTION
Trace 100 100 275 4 SENSOR
TwoLeadECG 23 1139 82 2 ECG
TwoPatterns 1000 4000 128 4 SIMULATED
UMD 36 144 150 3 SIMULATED
UWaveGestureLibraryAll 896 3582 945 8 MOTION
UWaveGestureLibraryX 896 3582 315 8 MOTION
UWaveGestureLibraryY 896 3582 315 8 MOTION
UWaveGestureLibraryZ 896 3582 315 8 MOTION
Wafer 1000 6164 152 2 SENSOR
Wine 57 54 234 2 SPECTRO

Table 10: Accuracy of tabular and time series methods on UTSC
datasets.
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ACSF1 0.42 0.41 0.62 0.75 0.90 0.91 0.88
Adiac 0.44 0.53 0.73 0.65 0.79 0.83 0.83
ArrowHead 0.73 0.67 0.73 0.70 0.82 0.84 0.87
Beef 0.87 0.93 0.87 0.77 0.83 0.87 0.77
BeetleFly 0.85 0.75 0.85 0.85 0.90 0.90 0.85
BirdChicken 0.50 0.55 0.70 0.75 0.90 0.90 0.90
BME 0.91 0.95 0.91 0.97 1.00 1.00 1.00
Car 0.80 0.80 0.83 0.67 0.90 0.92 0.92
CBF 0.83 0.84 0.85 0.89 1.00 1.00 1.00
Chinatown 0.98 0.95 0.98 0.98 0.98 0.98 0.98
ChlorineConcentration 0.85 0.88 0.78 0.71 0.82 0.77 0.79
CinCECGTorso 0.39 0.45 0.45 0.72 0.83 0.87 0.95
Coffee 1.00 1.00 1.00 0.96 1.00 1.00 1.00
Computers 0.51 0.49 0.48 0.62 0.75 0.70 0.78
CricketX 0.27 0.13 0.27 0.55 0.82 0.81 0.81
CricketY 0.37 0.15 0.39 0.60 0.86 0.83 0.85
CricketZ 0.31 0.15 0.28 0.57 0.85 0.82 0.84
Crop 0.56 0.63 0.69 0.76 0.75 0.75 0.77
DiatomSizeReduction 0.96 0.96 0.95 0.90 0.98 0.92 0.96
DistalPhalanxOutlineAgeGroup 0.66 0.60 0.69 0.77 0.76 0.75 0.78
DistalPhalanxOutlineCorrect 0.66 0.66 0.65 0.76 0.76 0.79 0.79
DistalPhalanxTW 0.61 0.58 0.60 0.68 0.72 0.70 0.69
Earthquakes 0.75 0.65 0.68 0.75 0.75 0.75 0.75
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ECG200 0.80 0.59 0.84 0.83 0.91 0.91 0.92
ECG5000 0.93 0.93 0.94 0.94 0.95 0.95 0.95
ECGFiveDays 0.99 0.94 0.97 0.80 1.00 1.00 1.00
ElectricDevices 0.44 0.46 0.47 0.65 0.73 0.73 0.73
EOGHorizontalSignal 0.34 0.27 0.39 0.44 0.64 0.59 0.65
EOGVerticalSignal 0.25 0.28 0.35 0.42 0.54 0.56 0.54
EthanolLevel 0.66 0.91 0.72 0.48 0.57 0.61 0.62
FaceAll 0.79 0.79 0.77 0.79 0.95 0.81 0.80
FaceFour 0.89 0.85 0.86 0.75 0.97 0.99 0.94
FacesUCR 0.70 0.62 0.73 0.77 0.96 0.96 0.96
FiftyWords 0.43 0.32 0.56 0.63 0.83 0.84 0.86
Fish 0.82 0.73 0.85 0.77 0.98 0.99 0.98
FordA 0.52 0.53 0.49 0.74 0.94 0.95 0.95
FordB 0.50 0.50 0.49 0.63 0.79 0.81 0.83
FreezerRegularTrain 0.99 0.98 0.98 0.95 1.00 1.00 1.00
FreezerSmallTrain 0.86 0.94 0.81 0.75 0.95 0.97 0.99
GunPoint 0.85 0.81 0.85 0.92 1.00 0.99 1.00
GunPointAgeSpan 0.87 0.57 0.89 0.97 1.00 0.99 1.00
GunPointMaleVersusFemale 0.97 0.68 0.99 0.97 1.00 1.00 1.00
GunPointOldVersusYoung 1.00 0.88 1.00 1.00 0.99 1.00 1.00
Ham 0.71 0.66 0.65 0.75 0.71 0.69 0.73
Haptics 0.43 0.35 0.38 0.44 0.52 0.53 0.56
Herring 0.59 0.58 0.63 0.66 0.70 0.66 0.67
HouseTwenty 0.73 0.72 0.72 0.71 0.97 0.97 0.99
InlineSkate 0.19 0.23 0.27 0.34 0.46 0.45 0.47
InsectEPGRegularTrain 0.82 1.00 1.00 1.00 1.00 1.00 1.00
InsectEPGSmallTrain 0.83 1.00 1.00 1.00 0.98 1.00 1.00
InsectWingbeatSound 0.62 0.26 0.58 0.63 0.66 0.67 0.68
ItalyPowerDemand 0.97 0.94 0.96 0.97 0.97 0.96 0.97
LargeKitchenAppliances 0.44 0.38 0.39 0.58 0.90 0.87 0.88
Lightning2 0.77 0.66 0.72 0.75 0.75 0.74 0.69
Lightning7 0.64 0.55 0.67 0.71 0.84 0.79 0.82
Mallat 0.76 0.86 0.82 0.91 0.96 0.95 0.92
Meat 0.98 0.98 0.93 0.92 0.95 0.97 0.93
MedicalImages 0.55 0.49 0.63 0.73 0.80 0.80 0.81
MiddlePhalanxOutlineAgeGroup 0.60 0.48 0.60 0.62 0.60 0.60 0.62
MiddlePhalanxOutlineCorrect 0.62 0.58 0.59 0.81 0.83 0.84 0.86
MiddlePhalanxTW 0.61 0.53 0.53 0.56 0.55 0.53 0.54
MixedShapes 0.79 0.71 0.82 0.87 0.97 0.97 0.98
MixedShapesSmallTrain 0.77 0.69 0.78 0.78 0.94 0.95 0.96
MoteStrain 0.86 0.72 0.86 0.88 0.91 0.93 0.95
OliveOil 0.90 0.90 0.90 0.90 0.90 0.93 0.97
OSULeaf 0.40 0.32 0.46 0.49 0.93 0.96 0.96
PhalangesOutlinesCorrect 0.67 0.66 0.67 0.82 0.83 0.84 0.85
Phoneme 0.11 0.08 0.10 0.13 0.28 0.27 0.35
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PigAirwayPressure 0.02 0.21 0.08 0.09 0.09 0.88 0.60
PigArtPressure 0.10 0.12 0.17 0.19 0.95 0.99 0.95
PigCVP 0.04 0.14 0.10 0.11 0.93 0.95 0.88
Plane 0.98 0.99 0.98 0.98 1.00 1.00 1.00
PowerCons 0.98 0.73 0.99 1.00 0.92 0.99 0.98
ProximalPhalanxOutlineAgeGroup 0.84 0.83 0.85 0.86 0.85 0.85 0.86
ProximalPhalanxOutlineCorrect 0.84 0.84 0.85 0.86 0.90 0.91 0.91
ProximalPhalanxTW 0.75 0.75 0.76 0.80 0.81 0.82 0.82
RefrigerationDevices 0.35 0.35 0.37 0.53 0.53 0.48 0.50
Rock 0.88 0.94 0.84 0.66 0.90 0.80 0.86
ScreenType 0.44 0.40 0.39 0.42 0.49 0.47 0.57
SemgHandGenderCh2 0.85 0.76 0.82 0.85 0.92 0.90 0.96
SemgHandMovementCh2 0.50 0.39 0.50 0.50 0.62 0.71 0.78
SemgHandSubjectCh2 0.78 0.59 0.81 0.68 0.89 0.87 0.92
ShapeletSim 0.49 0.51 0.48 0.51 1.00 1.00 1.00
ShapesAll 0.50 0.11 0.63 0.73 0.91 0.92 0.93
SmallKitchenAppliances 0.54 0.35 0.41 0.71 0.81 0.82 0.82
SmoothSubspace 0.80 0.83 0.86 0.99 0.98 0.94 0.98
SonyAIBORobotSurface1 0.69 0.70 0.68 0.67 0.92 0.89 0.89
SonyAIBORobotSurface2 0.83 0.81 0.81 0.81 0.91 0.92 0.94
StarLightCurves 0.85 0.81 0.92 0.95 0.98 0.98 0.98
Strawberry 0.93 0.95 0.95 0.96 0.98 0.98 0.98
SwedishLeaf 0.66 0.72 0.83 0.87 0.97 0.97 0.98
Symbols 0.77 0.82 0.82 0.85 0.97 0.98 0.98
SyntheticControl 0.80 0.93 0.91 0.96 1.00 0.98 1.00
ToeSegmentation1 0.57 0.55 0.58 0.62 0.96 0.96 0.95
ToeSegmentation2 0.55 0.54 0.56 0.75 0.92 0.92 0.92
Trace 0.61 0.70 0.76 0.83 1.00 1.00 1.00
TwoLeadECG 0.94 0.89 0.95 0.73 1.00 1.00 1.00
TwoPatterns 0.79 0.84 0.84 0.83 1.00 1.00 1.00
UMD 0.82 0.79 0.84 0.95 0.99 0.99 0.99
UWaveGestureLibraryAll 0.85 0.28 0.81 0.93 0.98 0.97 0.98
UWaveGestureLibraryX 0.63 0.51 0.63 0.76 0.86 0.85 0.87
UWaveGestureLibraryY 0.53 0.42 0.58 0.68 0.77 0.78 0.80
UWaveGestureLibraryZ 0.51 0.45 0.55 0.71 0.79 0.80 0.82
Wafer 0.94 0.94 0.94 0.99 1.00 1.00 1.00
Wine 0.83 0.91 0.89 0.78 0.81 0.83 0.89
WordSynonyms 0.38 0.23 0.46 0.55 0.75 0.76 0.78
Worms 0.38 0.42 0.34 0.55 0.74 0.75 0.75
WormsTwoClass 0.55 0.62 0.52 0.62 0.81 0.77 0.78
Yoga 0.65 0.59 0.67 0.81 0.91 0.91 0.92
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Table 11: Computation time (in minutes) for univariate datasets.
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ACSF1 0.03 0.04 0.29 0.19 0.83 0.12 0.26
Adiac 0.03 0.02 0.12 0.40 0.38 0.07 0.17
ArrowHead 0.01 0.01 0.03 0.11 0.14 0.02 0.07
Beef 0.01 0.01 0.05 0.10 0.08 0.02 0.04
BeetleFly 0.01 0.01 0.02 0.09 0.06 0.01 0.04
BirdChicken 0.01 0.01 0.04 0.09 0.06 0.02 0.04
BME 0.01 0.00 0.01 0.09 0.07 0.01 0.04
Car 0.01 0.01 0.06 0.11 0.19 0.04 0.09
CBF 0.01 0.00 0.01 0.09 0.31 0.05 0.18
Chinatown 0.01 0.00 0.01 0.09 0.03 0.01 0.03
ChlorineConcentration 0.02 0.02 0.04 0.40 1.85 0.28 1.08
CinCECGTorso 0.03 0.03 0.15 0.14 5.69 0.90 2.35
Coffee 0.01 0.01 0.02 0.09 0.04 0.02 0.03
Computers 0.03 0.05 0.04 0.28 0.87 0.21 0.37
CricketX 0.04 0.03 0.11 0.36 0.57 0.13 0.31
CricketY 0.03 0.03 0.11 0.34 0.57 0.15 0.31
CricketZ 0.03 0.03 0.13 0.37 0.57 0.13 0.31
Crop 0.08 0.05 0.53 2.98 4.23 1.86 5.57
DiatomSizeReduction 0.01 0.01 0.04 0.09 0.29 0.05 0.12
DistalPhalanxOutlineAgeGroup 0.01 0.01 0.03 0.18 0.13 0.04 0.09
DistalPhalanxOutlineCorrect 0.01 0.01 0.02 0.26 0.20 0.05 0.13
DistalPhalanxTW 0.01 0.01 0.03 0.18 0.12 0.04 0.08
Earthquakes 0.03 0.04 0.02 0.29 0.58 0.13 0.35
ECG200 0.01 0.01 0.01 0.11 0.05 0.02 0.04
ECG5000 0.02 0.02 0.05 0.26 1.66 0.32 0.83
ECGFiveDays 0.01 0.00 0.01 0.09 0.28 0.05 0.14
ElectricDevices 0.24 0.10 0.15 6.60 6.03 2.79 6.49
EOGHorizontalSignal 0.09 0.14 0.47 0.51 2.19 0.44 0.94
EOGVerticalSignal 0.06 0.14 0.44 0.53 2.18 0.42 0.95
EthanolLevel 0.16 0.30 0.41 0.86 4.29 0.81 1.66
FaceAll 0.02 0.02 0.13 0.40 0.69 0.13 0.36
FaceFour 0.02 0.01 0.04 0.11 0.10 0.02 0.06
FacesUCR 0.02 0.01 0.06 0.20 0.67 0.14 0.34
FiftyWords 0.05 0.04 0.46 0.73 0.58 0.13 0.24
Fish 0.02 0.03 0.15 0.21 0.38 0.08 0.16
FordA 0.58 0.45 0.19 5.25 6.03 1.44 2.77
FordB 0.78 0.34 0.23 5.80 5.51 1.34 2.62
FreezerRegularTrain 0.02 0.03 0.02 0.16 2.03 0.34 0.98
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FreezerSmallTrain 0.01 0.01 0.03 0.12 1.93 0.31 0.92
GunPoint 0.01 0.01 0.03 0.11 0.08 0.02 0.04
GunPointAgeSpan 0.01 0.01 0.02 0.13 0.16 0.03 0.08
GunPointMaleVersusFemale 0.01 0.01 0.01 0.12 0.16 0.03 0.08
GunPointOldVersusYoung 0.01 0.01 0.01 0.11 0.16 0.03 0.08
Ham 0.02 0.03 0.02 0.14 0.22 0.05 0.10
Haptics 0.03 0.05 0.14 0.24 1.17 0.21 0.44
Herring 0.02 0.02 0.03 0.13 0.16 0.03 0.07
HouseTwenty 0.04 0.06 0.07 0.14 0.74 0.13 0.35
InlineSkate 0.06 0.08 0.40 0.25 2.79 0.45 1.18
InsectEPGRegularTrain 0.02 0.02 0.03 0.11 0.43 0.07 0.21
InsectEPGSmallTrain 0.01 0.02 0.04 0.12 0.36 0.06 0.18
InsectWingbeatSound 0.03 0.02 0.09 0.23 1.26 0.21 0.48
ItalyPowerDemand 0.01 0.01 0.01 0.11 0.07 0.02 0.06
LargeKitchenAppliances 0.08 0.10 0.21 0.44 1.27 0.24 0.45
Lightning2 0.01 0.02 0.03 0.12 0.18 0.04 0.10
Lightning7 0.02 0.01 0.05 0.14 0.11 0.02 0.06
Mallat 0.03 0.04 0.15 0.17 5.47 0.94 1.77
Meat 0.01 0.01 0.04 0.11 0.13 0.03 0.06
MedicalImages 0.02 0.01 0.04 0.25 0.27 0.06 0.14
MiddlePhalanxOutlineAgeGroup 0.01 0.01 0.03 0.20 0.12 0.04 0.08
MiddlePhalanxOutlineCorrect 0.01 0.01 0.02 0.29 0.19 0.05 0.12
MiddlePhalanxTW 0.01 0.01 0.04 0.22 0.11 0.04 0.08
MixedShapes 0.11 0.17 0.24 0.67 6.73 1.20 2.49
MixedShapesSmallTrain 0.04 0.04 0.14 0.20 5.77 1.01 2.06
MoteStrain 0.01 0.00 0.01 0.11 0.24 0.05 0.13
OliveOil 0.03 0.01 0.06 0.11 0.09 0.03 0.04
OSULeaf 0.06 0.03 0.16 0.22 0.44 0.09 0.19
PhalangesOutlinesCorrect 0.04 0.02 0.03 0.97 0.56 0.19 0.37
Phoneme 0.05 0.08 0.93 0.77 4.86 0.93 1.98
PigAirwayPressure 0.08 0.08 1.96 0.63 1.43 0.27 0.61
PigArtPressure 0.07 0.08 2.12 0.60 1.43 0.27 0.54
PigCVP 0.06 0.08 1.98 0.62 1.44 0.30 0.62
Plane 0.01 0.01 0.03 0.13 0.08 0.02 0.04
PowerCons 0.02 0.01 0.01 0.13 0.13 0.03 0.07
ProximalPhalanxOutlineAgeGroup 0.01 0.01 0.03 0.19 0.13 0.05 0.08
ProximalPhalanxOutlineCorrect 0.01 0.01 0.02 0.28 0.18 0.05 0.12
ProximalPhalanxTW 0.01 0.01 0.03 0.20 0.13 0.03 0.08
RefrigerationDevices 0.05 0.09 0.08 0.44 1.26 0.27 0.59
Rock 0.05 0.05 0.35 0.14 0.46 0.10 0.19
ScreenType 0.09 0.08 0.13 0.43 1.25 0.30 0.49
SemgHandGenderCh2 0.06 0.12 0.13 0.42 3.09 0.68 1.57
SemgHandMovementCh2 0.11 0.20 0.33 0.77 3.14 0.78 1.63
SemgHandSubjectCh2 0.14 0.19 0.29 0.72 3.13 0.79 1.62
ShapeletSim 0.01 0.01 0.01 0.11 0.23 0.05 0.13
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ShapesAll 0.16 0.13 0.86 1.71 1.42 0.34 0.60
SmallKitchenAppliances 0.05 0.08 0.10 0.40 1.25 0.29 0.46
SmoothSubspace 0.01 0.01 0.01 0.11 0.02 0.01 0.02
SonyAIBORobotSurface1 0.01 0.00 0.01 0.10 0.10 0.03 0.06
SonyAIBORobotSurface2 0.01 0.00 0.01 0.10 0.15 0.04 0.09
StarLightCurves 0.39 0.56 0.35 1.04 21.16 4.04 6.29
Strawberry 0.04 0.03 0.04 0.34 0.55 0.14 0.25
SwedishLeaf 0.02 0.02 0.09 0.34 0.35 0.09 0.18
Symbols 0.01 0.01 0.05 0.11 0.90 0.20 0.34
SyntheticControl 0.01 0.01 0.03 0.17 0.09 0.03 0.07
ToeSegmentation1 0.01 0.01 0.02 0.11 0.17 0.04 0.08
ToeSegmentation2 0.01 0.01 0.02 0.11 0.13 0.03 0.07
Trace 0.01 0.01 0.04 0.13 0.13 0.04 0.08
TwoLeadECG 0.01 0.01 0.01 0.10 0.22 0.05 0.11
TwoPatterns 0.05 0.03 0.05 0.69 1.46 0.33 0.84
UMD 0.01 0.01 0.02 0.11 0.07 0.02 0.04
UWaveGestureLibraryAll 0.38 0.34 0.42 1.13 9.54 1.97 3.71
UWaveGestureLibraryX 0.10 0.08 0.13 0.79 3.17 0.70 1.19
UWaveGestureLibraryY 0.08 0.06 0.17 0.83 3.18 0.69 1.21
UWaveGestureLibraryZ 0.13 0.06 0.13 0.82 3.15 0.63 1.20
Wafer 0.03 0.03 0.03 0.66 2.44 0.48 1.18
Wine 0.01 0.01 0.02 0.11 0.07 0.02 0.04
WordSynonyms 0.02 0.02 0.18 0.33 0.56 0.12 0.22
Worms 0.03 0.05 0.14 0.27 0.55 0.13 0.25
WormsTwoClass 0.03 0.05 0.06 0.24 0.55 0.13 0.25
Yoga 0.03 0.04 0.06 0.31 3.10 0.55 1.18
Sum 5.88 5.75 18.38 53.16 158.77 34.56 73.47
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Table 12. Computation time (in minutes) for multivariate datasets.

Dataset RidgeCV RandomForest LogRegCV LDA

DuckDuckGeese 0.18 0.18 0.18 0.16
PEMS-SF 0.87 0.99 0.84 0.58

FaceDetection 0.57 0.61 0.65 0.57
MotorImagery 0.47 0.50 0.47 0.52
Heartbeat 0.65 0.72 0.67 0.72

FingerMovements 0.58 0.49 0.59 0.56
NATOPS 0.73 0.78 0.74 0.76

PhonemeSpectra 0.05 0.09 0.05 0.04
HandMovementDirection 0.54 0.47 0.58 0.49

ArticularyWordRecognition 0.87 0.98 0.97 0.97
SelfRegulationSCP2 0.43 0.47 0.44 0.46

BasicMotions 0.63 0.73 0.63 0.35
Cricket 0.82 0.89 0.92 0.93

EigenWorms 0.50 0.52 0.53 0.44
LSST 0.30 0.51 0.25 0.26

RacketSports 0.72 0.85 0.76 0.55
SelfRegulationSCP1 0.73 0.82 0.77 0.73

ERing 0.95 0.95 0.96 0.88
StandWalkJump 0.60 0.47 0.53 0.20

Epilepsy 0.31 0.47 0.33 0.33
EthanolConcentration 0.48 0.43 0.65 0.81

Handwriting 0.17 0.20 0.24 0.15
UWaveGestureLibrary 0.67 0.84 0.78 0.53

AtrialFibrillation 0.33 0.33 0.40 0.20
Libras 0.52 0.74 0.63 0.51
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