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Abstract. Accurate time series forecasting is a fundamental challenge in
data science, as it is often affected by external covariates such as weather
or human intervention, which in many applications, may be predicted
with reasonable accuracy. We refer to them as predicted future covariates.
However, existing methods that attempt to predict time series in an
iterative manner with auto-regressive models end up with exponential
error accumulations. Other strategies that consider the past and future
in the encoder and decoder respectively limit themselves by dealing with
the past and future data separately. To address these limitations, a novel
feature representation strategy - shifting - is proposed to fuse the past
data and future covariates such that their interactions can be considered.
To extract complex dynamics in time series, we develop a parallel deep
learning framework composed of RNN and CNN;, both of which are used
in a hierarchical fashion. We also utilize the skip connection technique
to improve the model’s performance. Extensive experiments on three
datasets reveal the effectiveness of our method. Finally, we demonstrate
the model interpretability using the Grad-CAM algorithm.

1 Introduction

Time series forecasting plays an essential role in many scenarios in real life.
Accurate forecasting allows people to do better resource management [2I] and
optimization decisions [5] for critical processes. Applications include demand
forecasting in retail [2], dynamic assignments of beds to patients [35], monthly in-
flation forecasting [I], and much more. Because of its popularity and significance,
many time series forecasting methods have been explored. Traditional statistical
forecasting methods, such as autoregression [8], exponential smoothing [13], and
ARIMA [3], are widely utilized for univariate time series. These methods learn
the temporal features (e.g., trends and seasonality) from past data and achieve
good performance for univariate time series prediction. But they are ineffective
to learn the complex dynamics among multivariate time series, partly because of
their inability to take advantage of covariates - independent variables that can
influence the target variable, although perhaps not directly.
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Good time series forecasting requires substantial amounts of historical data
of the target variable(s) to learn temporal patterns. They also require the exoge-
nous covariates to learn the dependent relationships. More importantly, in many
applications, some of the covariates can be predicted with reasonable accuracy
for the immediate future. We refer to such covariates from the immediate future
as predicted future covariates. For example, in terms of the task predicting water
levels in a river or canal system, a covariate of interest could be precipitation.
And it is possible to use historical data as well as reasonably accurate predictions
for the near future, which may be obtained from the weather services.
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Fig. 1. Direct method using Seq2Seq models with encoder and decoder.

Existing methods employing both past and future data for time series fore-
casting problems are mainly divided into two categories: (1) iterative meth-
ods [2325] that iteratively predict one step at a time, and (2) direct meth-
ods [I9131] that are trained to explicitly forecast the pre-defined horizons with
sequence-to-sequence models (which originated from the speech translation do-
main [20]). However, they have several limitations. The iterative methods con-
sider the prediction output from the previous time step as the input for the next
time step during the model training process. Such methods suffer from error
accumulation caused by the multiplication of errors.

In another direct strategy (see Fig. , the Seq2Seq framework — encoder and
decoder [22] absorbs the historical data in the encoder and includes the predicted
future covariates in the decoder. Such a strategy considers historical data and the
predicted future covariates separately, probably causing the model to miss the
past-future connections. Some researchers have added an attention layer [7J34]
in the Seq2Seq framework to capture more local or global information, but the
prediction performance improves only slightly and fails to handle the inherent
constraints of the Seq2Seq model.

In this work, we aim to address the existing limitations, and our five-fold
contributions are listed below:

— To avoid separately considering the past and future data, we propose a novel
feature representation strategy called shifting, which can contextually link
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the past with the predicted future covariate as an integrated input. Shifting
also makes it possible to use a single compact model to effectively combine
both past and future data simultaneously.

— To improve the efficiency of the model, we introduce a parallel framework
composed of RNN and CNN (ParaRCNN) to capture complex time series
dynamics. Note that ParaRCNN is a single and compact model compared
to the Seq2Seq architecture.

— Our model can make multi-step predictions in a one-shot manner, which can
avoid error accumulation in contrast to auto-regressive models.

— We adapt the skip connection to facilitate improved learning since such a
technique can maximize the usability of input features.

— We provide the model interpretability with the Grad-CAM algorithm to
identify how each time step and feature contributes to the final predictions.

2 Problem Formulation

Let ZY, = (20,280, ...,2M))_, € RN be N univariate time series of target
variables, where z;* € R denotes the value of the n-th target variable at time ¢. Let
XM = (a7, 25, .. 2m)M e RP*M be M the observed time-varying covariates
that are measured until time ¢ and that cannot be predicted for the future.
Finally, let Y&, = (y%, 4, ... ,yf)qul € R be the Q time series for covariates
measured until time ¢, but which can be reliably estimated for the near future;
we let Yg_l:t 4 € R™Q denote those predicted covariates k time steps into the
future. We refer to these estimable variables as future predictable covariates. The
goal of forecasting models is to compute the predicted trajectories of the target
time series. We will refer to these as Zé\il;wk (k is the forecasting length) to
distinguish it from the measured target time series. The computations assumes
that the input data is heterogeneous and includes the historical data (target
variables Z¥,, observed covariates X% historical future predictable covariates
Y%)7 and predicted future covariates Yﬁl;t 4 Note that the term “covariate”
in this paper refers to those exogenous time-varying covariates rather than time
itself.

3 Related Work

Traditional statistical methods learn the temporal patterns only based on his-
torical data [3J28] of target variables themselves (see Eq. (1])). However, many
approaches also aim to learn the dependent relationship between target variables
and covariates, especially for the predicted future covariate [ZJ9IT9I23I25129I3T].
Related research can be mainly categorized into iterative methods using auto-
regressive models and direct strategies that use sequence-to-sequence models.
We have: . A

Zi\-[i-i = FQ(Z{\:rt’ Zﬁ,—l:t-&-i—l)’ (1)

where Fy(-) is a prediction model with a set of learnable parameters 6; Z,{\_’H is
the N target variables i time step into the future for i = 1,2,... k.
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Iterative methods. The iterative strategy recursively uses a one-step-ahead
forecasting model [6I32] multiple times where the predicted value for the previous
time step is used as the input to forecast the next time step. A typical iterative
framework is the DeepAR model [25] from Amazon Research. During the training
process, to predict target values Z,{V at time step ¢, the inputs to the network
are the covariates YtQ , the target values at the previous time step Z} |, and the
previous network output h;_;. Note that the previous target values are known
during training. During inference, measured target values ZY ; are replaced by
predicted target values Ziv_ ; and then fed back to predict the next time step of
Z{YH until the end of the prediction range. A mathematical formulation of such
forecasting methods is given in Eq. using the notation in Section [2| Similar
approaches were adopted in [T416/23] using different backbones. However, an
inherent shortcoming of this method is that errors accumulate multiplicatively
since later predictions depend on earlier predictions.

Zz{/\ii = FG(Zjl\:,ta Zﬁl:tﬂela X{\{IHY?:Hi)' (2>

Direct methods. The typical Seq2Seq framework for direct methods is
shown in Fig [I} It deals with past and future data separately in the encoder
and decoder components, respectively. The encoder model learns the feature
representation of past data, which is saved as context vectors in a hidden state.
The decoder model takes as input the encoder output and the additional fu-
ture covariates to predict the future target values. Examples of this approach
include the MQRNN model [31] that used an LSTM as the encoder to generate
context vectors, which are then combined with future covariates and fed into a
multi-layer perceptron (MLP) to predict the future horizon. Some efforts [7J9]
have utilized a temporal attention mechanism between the encoder and the de-
coder. This architecture can learn the relevance of different parts of the feature
representations from historical data by computing “attentional” weights. The
weighted feature representations are then passed into the decoder to predict
future time steps. Temporal Fusion Transformer [I9] combined gated residual
networks (GRNs) and an attention mechanism [30] as an additional decoder
on top of the traditional encoder-decoder model. They used GRNs to filter un-
necessary information and employed the additional decoder with an attention
mechanism to capture long-term dependencies. Generally, the direct methods
can be modeled as follows:

Ht = Fencoder(zi\ftv X{\/It, Y?:t%
Zﬁ_i = Fdecoder (Hta Ygfl:tJri)'

Direct methods that use the Seq2Seq framework with the encoder and decoder in
series might be prone to miss some interactions between the past and future due
to separate processing styles. Moreover, the Seq2Seq framework is complicated
and computationally time-consuming because of the use of two models — the
encoder and the decoder. This provided the motivation for us to explore a com-
pact model that simultaneously analyzes the measured past and the predictable
future.

(3)
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4 Methodology

In this section, we first illustrate the shifting strategy that fuses the past and
future data in a structured way for an integrated feature representation. Then
we present the details of the proposed model architecture and discuss how it
learns from the fused data and the skip connection technique. In this paper, we
define a sliding window [I1] (also called rolling window [17] or look-back window
[27]) of a certain length, w, as the input from the recent past, and to predict
future time steps of length k.

4.1 Data Fusion with Shifting

To avoid dealing with the past and future data separately, we shift the covariates
for the future period of interest (blue dotted trajectory in Fig. [2]) back by s time
steps, such that they are aligned and fused with all historical time series to
produce distinct feature vectors. Then both the past and future data are fed
into a single model together. Now the inputs are composed of all the past time
series (target and covariates) aligned from time steps t — w + 1 to ¢ with future
predictable covariates from time steps t — w + 1 + s to t + s. Specifically, at
each time step, we obtain a 4-tuple (z;,x;,y;,y;+s), which is input to a state
cell in the RNN (Fig. |4) or a filter kernel in the CNN (Fig. , thus fusing the
information from the historical data (z;,z;,y;) at time j and future predictable
covariates y;s at time j + s. The above design allows both the past and future
to be considered in one single component of the model at the same time. The set
of target variables, Z£V+1:t 4 are predicted in the forecasting horizon from ¢ -1
to t + k. The shifting strategy is illustrated in Fig. [2| and modelled as Eq.
below:

5N _ N M Q Q
Zt+l:t+k - Ge(ztfubi»l:t? Xt7w+l:t’ Yt—u7+1:t7 Yt—w+1+s:t+s)? (4>

where Gg(-) is a function with learnable parameters 6; and Y?_ wiltsitrs 1S the
future predictable covariates along with predictions from s time steps into the
future and then shifted back by s time steps (green trajectories merged with
dotted blue trajectories in Fig. . Note that the shifted future predictable
covariates YtQ_ wiltsits and the single unified model given by Gy in Eq.
differentiate our method from the previous methods discussed in Section [3]

4.2 Network Architectures

With the input data transformed and fused (Fig. [2| right) by the shifting strat-
egy, we develop a parallel framework composed of RNN and CNN;, both of which
are in a hierarchical structure. As shown in Fig. [] both the number of filters
for CNN and the number of units for RNN decrease over the layers to extract
high-level time series dynamics. More specifically, since RNN and CNN learn
the temporal dependency and dynamics in different mechanisms, we construct
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Fig. 2. Input data transformed by the shifting strategy. Left: Trajectories of all vari-
ables before transformation. Right: Original trajectories along with shifted future pre-
dictable covariates. Predicted output is the future k time steps of the target variables.

RNN and CNN in parallel, which benefits the model by capturing heterogeneous
feature representations from input time series. Meanwhile, the skip connection
technique is utilized to enhance learning since it maximizes the usability of the
input features. Lastly, the fused input, the CNN output, and the RNN output
are concatenated together and fed into a fully-connected layer to make the final
predictions.

skip connection
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Fig. 3. Architecture of the proposed ParaRCNN model. There are 256, 128, 64, and
32 filters for CNN modules (Conv1D) and 128, 64, 32, and 16 units for RNN modules
(SimpeRNN), respectively.

RNN with Shifting Recurrent Neural Networks (RNNs) learn the temporal
dependency from input features in the recent past to future one or more target
variables by recurrently training and updating the transitions of an internal
(hidden) state from the last time step to the current time step. To predict the
future k£ time steps, the standard RNNs were further modified to remove the
hidden states hyy1,heyo,.., i1 to enable a one-shot prediction while avoiding
the accumulation of prediction errors. As shown in Fig. [ we implement the
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RNNs with only w hidden states in our paper. The predicted future covariates
are shifted to the past by s time steps and aligned with past data by the shifting
strategy such that the input for each hidden state h; at time ¢ = j is a 4-
tuple (z;,X;,¥;,¥;+s). Hierarchical RNNs queued in series (Fig.|3|) are expected
to distill the high-level features from the input time series. At last, the RNNs
generate the prediction for target variables (z11,Z¢yo,-..,%¢+k) in a one-shot
manner. The hidden states are recursively computed by:

hj = f(hj_1,25,%;,¥5,Yj+s)

(5)
= tanh(b+U"h;_1 + W (z;,%;,¥;,¥j+s)),

where f is an activation function (hyperbolic tangent function); h; and h;_;
refer to the current and previous hidden states; zj;, x;, and y; represent the
target time series, observed covariates, and predictable future covariates from
the past w time steps; y;4+s denotes the predicted future covariates from k steps
into the future; U, W are weight matrices and b is the bias vector.

(Yt-wt1): Yt-w+2; Yis iyt73+1§ Yy 19 FS R

Vi—wties Vi—wtiss) (Y yHl 3;\~Yff‘f:5*:’3

,,,,,,,,,, shift left s timesteps

- -> traditional seq-to-seq — our method shifting time steps

Fig. 4. The RNN architecture with the shifting strategy. Dashed blue ovals represent
predicted future covariates. Solid ovals are historical target variables and covariates.
The last row has the shifted covariates.

CNN with Shifting CNN is a popular model in the image processing field
because of the powerful learning ability of convolutional kernels embedded inside.
2D-CNN is widely adopted to deal with images [33] by moving 2-D convolutional
kernels along the height and width dimension of each image. For multivariate
time series, it consisted of multiple univariate time series that fundamentally
are sequential in nature. Therefore, 1-D convolutional kernels (also called filters)
are used in our paper to learn the temporal and cross-feature dependency [15].
We consider the multivariate time series as a matrix with the shape of (rows,
columns) [36] where the rows represent the time steps, and the columns represent
the features that generally equal the number of time series dimensions. We also
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Fig. 5. CNN with 3 convolutional layers. Input includes all original variables and the
shifted predicted future covariates. Each filter includes past and future information.
Each row represents the convolution results with one filter.

tried 2D-CNN, and the performance was not much different from 1D-CNN, but
it needs more computation resources.

As Fig. [] shows, the shifted future predictable covariates and the original
observed data are simultaneously considered by the sliding 1-D convolutional
kernels. In other words, each 1-D convolutional kernel learns from the historical
data (past) and the predicted data s time steps ahead (future). Such convolu-
tional operations on both the history and predicted future input could be de-
scribed by Eq. @ Formally, a convolution operation between two convolutional

layers is given by Eq. .

_ N M Q
Vi = o(K;®(Zj 4 ae: Xjjyae YA

Q
Yj+s:j+At+s))7 (6>
where ® refers to the convolution operator; K; is a filter at the time j; At is the
length of segmented time series for the convolutioncomputations; o represents

the activation function; Vj is the output value at time j.

Fl
I+1 1 l l
aitt = o+ Kl @ad), (7)
f=1
where ® represents the convolution operator; [ indexes the layer, f indexes the

filter; K is a filter at the time j; F' is the number of filters used in the [** layer;
o denotes the activation function.

Skip Connection It is used to train a deep neural network by copying and by-
passing the input from the former layers to the deeper layers by matrix addition.
ResNets add a skip-connection that bypasses the non-linear transformations with
an identity function. For example, given a single image x¢ that is passed through
subsequent convolutional layers, each layer implements a non-linear transforma-
tion H(-). The output of I*" layer with skip connection looks as:

X = Hl(xl_l) +xi—1. (8)
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DenseNets [12] achieves skip connections by concatenation. In their work, for
each layer, the feature maps of all preceding layers and their own feature maps
are used as inputs into all subsequent layers by simple concatenation as shown
in Eq. (9). There are L(L+1)/2 skip connections for the networks with L layers.

x; = Hy(zo,21,...,7-1), 9)

where g, 1,...x;_1 denotes the concatenation of the feature maps produced
in previous layers. It shows how the [*" layer considers the feature maps of all
former layers as input.

T = Hl(l'l—l) + x9. (10)

However, challenges persist with both strategies. ResNets hinder the skip con-
nection because of the matrix addition, which needs the same dimension for both
preceding and subsequent matrices. DenseNets have a more complex structure
with L(L+1)/2 connections as it conveys all former outputs to the latter layers.
U-Net models simply pass the original input once to the latter layers. In our
model, we adopt L skip connections by bypassing the original input to every
latter layer with concatenation (see Eq. and Fig. [6d). Such a structure can
facilitate the model by reusing the original input many times and learning it
directly while avoiding the vanishing gradient issue of deeper layers [I§].

In| 2 2 - B - B Out
m| B3 B3 B3 ow -~ CQETORE PR E
— >0 L0 L0 U © o 2
o o o x
(a) Skip once (b) Skip L(L+1)/2 times
= D = D = D = D = D > D
In| = 5 Zz 1 Zz O Out In| = 3 = e NN AN | rLOut
— >0 U w m — 0o u m > m >
SE%LSE%L&I gE-ogE~ogE-®
(c) Skip L times (d) Skip L times

Fig. 6. Various strategies for skip connection. We adopt the strategy of (d) in our paper
and compare it with (a) Skip once used in U-net [24], (b) Skip L(L + 1)/2 times used
in DenseNet [12], and (c) the benchmark strategy skipping L times.

5 Experiments

5.1 Datasets

Three real-world datasets were used for time series forecasting tasks. Beijing
PM2.5 and Electricity price datasets are publicly available from the Machine
Learning Repository of the University of California, Irvine, and Kaggle reposi-
tories, respectively. The third one is the Water Stage dataset downloaded from
the South Florida Water Management District (SFWMD) website.
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Beijing PM2.5 It includes hourly observed data from January 1, 2010, to
December 31, 2014. We consider PM2.5 as the target variable to predict, other
variables such as dew, temperature, pressure, wind speed, wind direction, snow,
and rain are covariates that can be predicted and can influence PM2.5 values.
PM2.5 € [0,671] ug/m?>.

Electricity price It has two hourly datasets from January 1, 2015, to De-
cember 31, 2018. Energy_dataset.csv includes energy demand, generation, and
prices, while weather_features.csv gives the weather features temperature,
humidity, etc. Electricity price is the target variable to predict, while the prior
known predictable covariates are energy demand, generation, and weather fea-
tures. Electricity price € [$9.33,$116.8] in this dataset.

Water stage This is an hourly dataset from January 1, 2010, to December
31, 2020, and includes information on water levels, the height of gate opening,
water flow values through the gate, water volumes pumped at gates, and rain-
fall measures. The water stage is the target variable while other variables are
covariates. Rainfall, gate position, and pump control are future covariates that
can be predicted. Water stage € [—1.25,4.05] feet in the dataset.

5.2 Training & Evaluation

Our models. We predict £ = 24 hours in the future with input windows of size
w = 72 hours and predicted future covariates in the same future horizons. We
consider the entire target series Zi\_fH:t 1 as the ground-truth labels in supervised
learning, which can allow one-shot forecasting to avoid the error accumulation
of the traditional iterative prediction. For each dataset, we selected the first 80%
as the training set to train the models, and the remaining 20% was chosen as
the test set to evaluate the performance. Max-Min normalization shown as Eq.
was used to squeeze the input data into [0,1] to avoid possible data bias
due to the different scales. We also used early stopping and L1L2 regularization
to alleviate overfitting. There are several hyperparameters in our model. We
set {16,32,64,128,256} as the candidate numbers of internal units of RNNs
and filters in CNNs. {1le-3, 5e-4, le-4, 5e-5, le-5} was tested as the learning rate
and regularization factor. The shifting length s was validated with the range of
[1,w + k] (see Fig. @ Open-source code can be accessed via the linkﬂ

o/ = L Tmin_ (11)

Tmaz — LTmin

Baseline models. DeepAR [25] iteratively predicting future time steps was
viewed as one of the baseline models. Seq2Seq approaches include MQRNN [31]
and Temporal Fusion Transformer (TFT) [19], which consider the past data and
future covariates separately in the encoder-decoder framework. To validate the
functionality of shifting, we also adapted baselines as a single branch in Fig.
(RNN or CNN) as backbones with the encoder-decoder framework (no shifting).
We refer to them as RNN-RNN and CNN-CNN in Table [l

! https://github.com/JimengShi/ParaRCNN-Time-Series-Forecasting.
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Algorithm 1 Model Training
Input: covariate time series: X1, 7, Y1,71;

target time series: Zi 7, where T is the total length of data set..
Parameter: w: sliding window length, k: forecasting length, s: shifted length.
Output: well-trained model

1: // construct training instance pairs

2: D+ 0

3: for each available time point w <t < T — s do

4 Spast {Xt—w+l,t7Yt—w+1,t7 Zt—w+1,t}

5: Sshifted < {Yt—w+1+s,t+s}

6: Starget <~ Zt+1,t+k

7 put a instance pair ({Spast, Sshifted}, Starget) into D
8: end for

9: // train the model

10: initialize all learnable parameters 6 for the model

11: repeat

12:  randomly selects a batch of instance pairs D, from D
13: model outputs Zt+1,t+k for each batch

14:  finds 6 by minimizing the loss function in Eq.
15: until stopping criteria is satisfied

16: return well-trained model with the best parameters 0

All models were trained by minimizing the loss function in Eq. , which
describes the mean square error between predicted and ground-truth values.
The training process is given as Algorithm [I] The testing process is achieved
by the trained model with the same data processing as the first 8 rows. Mean
Absolute Errors (MAEs) and Root Mean Square Errors (RMSEs) are the metrics
to evaluate the trained models. Each experiment was repeated 5 times with 5
random seeds. Table [I| reports the average results with an error bound.

P
. 1 .
L(Zv Z) = 5 Z[(Zﬁl,HM - (Zg—l,ﬁk)ﬂ?- (12)
o=1

5.3 Hyperparameter Study

Shift length. Fig.[7|shows the MAEs and RMSEs using ParaRCNN with differ-
ent shifting lengths on the Water-stage dataset, which can help us to delineate
the relationship between the shifting lengths and the model performance. We
observed that k < s < w generates better performance.

Model layers. After ensuring the shift length s = k, we try to analyze the
best number of layers for the ParaRCNN model. We found 3 or 4 layers (see
Fig. [§) perform the best for the datasets in our paper (3 layers for Electricity
dataset, 4 layers for Water-stage and PM2.5 dataset).
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Fig. 7. MAE & RMSE for different forecasting lengths (k) and shift lengths (s). The
left red point of each subplot represents the errors when s = k£ while the right red point
denotes the errors when s = w. (w = 72 hours, k = 6, 12,24 hours.)

5.4 Prediction Results

The first 5 rows in Table [1| show the performance of the baseline models. Our
models are listed in the last 5 rows. We use a single RNN architecture of RNN-
RNN and apply shifting to it as RNN-Shift. To test the effectiveness of skip
connection, we add it to RNN-Shift and call it RNN-Shift-SC. A similar pro-
cess is applied to CNN-Shift and CNN-Shift-SC. At last, we propose ParaRCNN
(see Fig. by combining RNN and CNN in parallel with both shifting and
skip connection techniques. Compared with baseline models in Table|[l| the per-
formance of models with shifting is comparable or slightly better than some
baselines, while ParaRCNN achieves the best with the help of shifting and skip
connection.

5.5 Skip Connection Study

We apply skip connection with different strategies (see Fig. @ to the ParaRNN
model. Taking an example of L layers, there are five situations considered: (a)
One skip in U-net [24]; (b) L(L + 1)/2 skips in DenseNet [12]; (¢) L skips; (d) L
skips; and (e) No skip connection. Fig. |§|shows the performance of (e) without a
skip connection is clearly much poor than others and (a-d) is roughly the same.
The possible reason is that our network is a shallow one with only 4 layers. L
and L(L + 1)/2 skips do not exist a big difference. However, the number of skip
connections is indeed reduced from L(L + 1)/2 to L.
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Table 1. MAEs & RMSEs with &£ = 24 hours on the test sets.

Methods Beijing PM2.5 Electricity Price Water Stage
MAE RMSE MAE RMSE MAE RMSE
MQRNN 33.94+1.14 53.13£1.22 3.484+0.14 4.694+0.19 0.121+1e-2 0.156+4e-2
DeepAR 36.57+£0.72 57.754+0.98 5.234+0.12 6.594+0.18 0.196+9¢-3 0.231+1e-2
TFT 36.32+£0.82 60.13+1.37 3.76+£0.16 5.524+0.24 0.11947e-3 0.158+9e-3

RNN-RNN 33.43+£0.79 52.43£1.15 4.27+0.15 5.7240.26 0.142+4e-3 0.177+£8e-3
CNN-CNN 33.90+0.57 53.15£1.22 3.784+0.14 5.0840.21 0.110+£8e-3 0.177+9e-3

RNN-Shift 33.37£0.59 52.96+£1.27 3.964+0.13 5.23+0.24 0.109+1e-2 0.151+9e-3
RNN-Shift-SC 31.90£0.55 50.89+1.09 3.49+0.12 4.65+0.18 0.071£7e-3 0.096£7e-3
CNN-Shift 33.55+£0.46 52.94+1.11 3.854+0.14 5.0940.20 0.131+£8e-3 0.158+9e-3
CNN-Shift-SC 31.76+£0.43 50.61+1.08 3.48+0.12 4.69£0.17 0.059+5e-3 0.081£6e-3
ParaRCNN 31.48+0.36 49.97+0.89 3.39£0.10 4.60£0.13 0.054+4e-3 0.075£9e-3
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Fig. 8. Model performance vs. Number of layers (w = 72 hours, k = 24 hours).

5.6 Model Explainability

After the model was trained, we analyzed how much each time step and fea-
ture contribute to the final outputs. With the Grad-CAM algorithm [26], we
first compute the gradient of the target values with respect to the feature map
activations of the concatenated layer. These gradients flow back over the input
of shape (time steps x features) to obtain the neuron importance weights (see
Fig. 10| in Appendix A). The water stage at S1, S25A, S25B, and S26 are tar-
get values to predict. The first 19 rows are original past input and the last 9
rows shifted covariates (shifted future covariates are from 48 to 72). It shows our
model pays more attention to these future covariates since target variables in the
future horizon have a dependent relationship with them. This is as described in
Section The water stages at different stations are more correlated because
these stations are adjacent to the ocean and water stages are changing with the
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trend of the tide (WS_S4). We visualize each time series in Appendix B (see
Figs. [11{ and providing better observations for readers.

Water stage dataset

(e)1 . | |
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Error
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Fig. 9. MAE & RMSE for various strategies to implement skip connection. (a) One
skip in U-net [24]; (b) L(L + 1)/2 skips in DenseNet [12]; (c) L skips as one benchmark;
(d) L skips we are using in our paper; and (e) No skip connection.

6 Discussion and Conclusions

We have demonstrated with experiments that the utilization of future covari-
ates can enhance performance. The model explainability shows their importance
from another point of view. To take the advantage of future covariates, the pro-
posed data fusion method, shifting, can generate comparable or slightly better
performance with a single compact model. Besides, our experiments delineate
an appropriate range of the shift length (see Fig. E[) When s < k or s > w,
considerably lower performances occur since the models only get to utilize some
of the predicted covariates from the future k time steps. However, when s > k,
either the performance is flat or deteriorates as s is increased. We observe that
k < s < w generates better performance since all predicted future covariates in
the forecasting horizon are included. The variations for £ < s < w are too small
to be significant.

Skip connection can further improve the model performance. Our imple-
mentation strategy that presents the original input to each subsequent layer
generated roughly the same or better performance when compared with other
strategies. Our ParaRCNN model equipped with shifting and skip connection
techniques consistently outperformed all other models in our paper.
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7 Appendix

7.1 Model Explainability

We provide the explainability of the trained model using the Water Stage dataset.
The following figure shows how important each feature and each time step is for
the final predictions.
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Fig. 10. Importance weights (feature vs. time step) with Grad-CAM algorithm.
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7.2 Visualization of Time Series

We visualize the time series in Fig. [I0] below. The unit of each feature is ignored.
We refer readers to see Fig. [2] for better understanding.
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Fig. 11. Visualization of target variables and covariates from the past.
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Fig. 12. Visualization of shifted future predictable covariates.
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