Skip to main content

Extracting Features from Random Subseries: A Hybrid Pipeline for Time Series Classification and Extrinsic Regression

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14343))

Abstract

In time series classification (TSC) literature, approaches which incorporate multiple feature extraction domains such as HIVE-COTE and TS-CHIEF have generally shown to perform better than single domain approaches in situations where no expert knowledge is available for the data. Time series extrinsic regression (TSER) has seen very little activity compared to TSC, but the provision of benchmark datasets for regression by researchers at Monash University and the University of East Anglia provide an opportunity to see if this insight gleaned from TSC literature applies to regression data. We show that extracting random shapelets and intervals from different series representations and concatenating the output as part of a feature extraction pipeline significantly outperforms the single domain approaches for both classification and regression. In addition to our main contribution, we provide results for shapelet based algorithms on the regression archive datasets using the RDST transform, and show that current interval based approaches such as DrCIF can find noticeable scalability improvements by adopting the pipeline format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.timeseriesclassification.com/dataset.php.

  2. 2.

    http://tseregression.org/.

  3. 3.

    https://tsml-eval.readthedocs.io/en/latest/publications/2023/tser_archive_expansion/tser_archive_expansion.html.

  4. 4.

    https://github.com/time-series-machine-learning/tsml-eval.

  5. 5.

    https://www.aeon-toolkit.org/.

  6. 6.

    https://tsml-eval.readthedocs.io/en/latest/publications/2023/rist_pipeline/rist_pipeline.html.

References

  1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bagnall, A., et al.: The UEA multivariate time series classification archive. arXiv preprint arXiv:1811.00075 (2018)

  3. Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on mean-ranks? J. Mach. Learn. Res. 17, 1–10 (2016)

    MathSciNet  Google Scholar 

  4. Bostrom, A., Bagnall, A.: Binary shapelet transform for multiclass time series classification. Trans. Large-Scale Data Knowl. Centered Syst. 32, 24–46 (2017)

    Google Scholar 

  5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  Google Scholar 

  6. Cabello, N., Naghizade, E., Qi, J., Kulik, L.: Fast and accurate time series classification through supervised interval search. In: IEEE International Conference on Data Mining (2020)

    Google Scholar 

  7. Cabello, N., Naghizade, E., Qi, J., Kulik, L.: Fast, accurate and interpretable time series classification through randomization. arXiv preprint arXiv:2105.14876 (2021)

  8. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh-A Python package). Neurocomputing 307, 72–77 (2018)

    Article  Google Scholar 

  9. Dau, H., et al.: The UCR time series archive. IEEE/CAA J. Automatica Sinica 6(6), 1293–1305 (2019)

    Article  Google Scholar 

  10. Dempster, A., Petitjean, F., Webb, G.: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 34, 1454–1495 (2020)

    Article  MathSciNet  Google Scholar 

  11. Dempster, A., Schmidt, D.F., Webb, G.I.: HYDRA: competing convolutional kernels for fast and accurate time series classification. arXiv preprint arXiv:2203.13652 (2022)

  12. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  13. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Inf. Sci. 239, 142–153 (2013)

    Article  MathSciNet  Google Scholar 

  14. Fawaz, H., et al.: InceptionTime: finding AlexNet for time series classification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

    Article  MathSciNet  Google Scholar 

  15. Flynn, M., Large, J., Bagnall, T.: The contract random interval spectral ensemble (c-RISE): the effect of contracting a classifier on accuracy. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 381–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_33

    Chapter  Google Scholar 

  16. García, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple data sets’’ for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    Google Scholar 

  17. Gay, D., Bondu, A., Lemaire, V., Boullé, M.: Interpretable feature construction for time series extrinsic regression. In: Karlapalem, K., et al. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12712, pp. 804–816. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_63

    Chapter  Google Scholar 

  18. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006)

    Article  Google Scholar 

  19. Guijo-Rubio, D., Middlehurst, M., Arcencio, G., Silva, D.F., Bagnall, A.: Unsupervised feature based algorithms for time series extrinsic regression. arXiv preprint arXiv:2305.01429 (2023)

  20. Guillaume, A., Vrain, C., Elloumi, W.: Random dilated shapelet transform: a new approach for time series shapelets. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds.) Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, 1–3 June 2022, Proceedings, Part I, pp. 653–664. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09037-0_53

  21. Herrmann, M., Tan, C.W., Salehi, M., Webb, G.I.: Proximity Forest 2.0: a new effective and scalable similarity-based classifier for time series. arXiv preprint arXiv:2304.05800 (2023)

  22. Lines, J., Davis, L., Hills, J., Bagnall, A.: A shapelet transform for time series classification. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2012)

    Google Scholar 

  23. Lines, J., Taylor, S., Bagnall, A.: Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Discov. Data 12(5), 1–36 (2018)

    Article  Google Scholar 

  24. Lubba, C., Sethi, S., Knaute, P., Schultz, S., Fulcher, B., Jones, N.: Catch22: canonical time-series characteristics. Data Min. Knowl. Disc. 33(6), 1821–1852 (2019)

    Article  Google Scholar 

  25. Lucas, B., et al.: Proximity forest: an effective and scalable distance-based classifier for time series. Data Min. Knowl. Disc. 33(3), 607–635 (2019)

    Article  Google Scholar 

  26. Middlehurst, M., Large, J., Cawley, G., Bagnall, A.: The temporal dictionary ensemble (TDE) classifier for time series classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 660–676. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_38

    Chapter  Google Scholar 

  27. Middlehurst, M., Bagnall, A.: The FreshPRINCE: a simple transformation based pipeline time series classifier. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds.) Pattern Recognition and Artificial Intelligence, ICPRAI 2022. LNCS, vol. 13364, pp. 150–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09282-4_13

  28. Middlehurst, M., Large, J., Bagnall, A.: The canonical interval forest (CIF) classifier for time series classification. In: IEEE International Conference on Big Data, pp. 188–195 (2020)

    Google Scholar 

  29. Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: HIVE-COTE 2.0: a new meta ensemble for time series classification. Mach. Learn. 110, 3211–3243 (2021)

    Google Scholar 

  30. Middlehurst, M., Schäfer, P., Bagnall, A.: Bake off redux: a review and experimental evaluation of recent time series classification algorithms. arXiv preprint arXiv:2304.13029 (2023)

  31. Nguyen, T.L., Ifrim, G.: Fast time series classification with random symbolic subsequences. In: Guyet, T., Ifrim, G., Malinowski, S., Bagnall, A., Shafer, P., Lemaire, V. (eds.) International Workshop on Advanced Analytics and Learning on Temporal Data, vol. 13812, pp. 50–65. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-24378-3_4

  32. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  33. Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL. In: Proceedings of the ACM Conference on Information and Knowledge Management, pp. 637–646 (2017)

    Google Scholar 

  34. Schäfer, P., Leser, U.: Weasel 2.0 - a random dilated dictionary transform for fast, accurate and memory constrained time series classification. arXiv preprint arXiv:2301.10194 (2023)

  35. Shifaz, A., Pelletier, C., Petitjean, F., Webb, G.I.: TS-CHIEF: a scalable and accurate forest algorithm for time series classification. Data Min. Knowl. Discov. 34(3), 742–775 (2020)

    Article  MathSciNet  Google Scholar 

  36. Tan, C.W., Bergmeir, C., Petitjean, F., Webb, G.: Time series extrinsic regression. Data Min. Knowl. Discov. 35, 1032–1060 (2021)

    Article  MathSciNet  Google Scholar 

  37. Tan, C.W., Dempster, A., Bergmeir, C., Webb, G.: MultiRocket: multiple pooling operators and transformations for fast and effective time series classification. Data Min. Knowl. Discov. 36, 1623–1646 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant number EP/W030756/1. The experiments were carried out on the High Performance Computing Cluster supported by the Research and Specialist Computing Support service at the University of East Anglia (UEA). We would like to thank all those responsible for helping maintain the time series dataset archives and those contributing to open source implementations of the algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Middlehurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Middlehurst, M., Bagnall, A. (2023). Extracting Features from Random Subseries: A Hybrid Pipeline for Time Series Classification and Extrinsic Regression. In: Ifrim, G., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2023. Lecture Notes in Computer Science(), vol 14343. Springer, Cham. https://doi.org/10.1007/978-3-031-49896-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49896-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49895-4

  • Online ISBN: 978-3-031-49896-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics