Skip to main content

Empirical Evaluations of Machine Learning Effectiveness in Detecting Web Application Attacks

  • Conference paper
  • First Online:
Future Access Enablers for Ubiquitous and Intelligent Infrastructures (FABULOUS 2023)

Abstract

Web applications remain a significant attack vector for cybercriminals seeking to exploit application vulnerabilities and gain unauthorized access to privileged data. In this research, we evaluate the efficacy of eight supervised machine learning algorithms - Naive Bayes, Decision Tree, AdaBoost, Random Forest, Logistic Regression, K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Artificial Neural Network (ANN) - in detecting and countering web application attacks. Our results indicate that KNN and Random Forest classifiers achieve an accuracy rate of 89% and an area under the curve of 94% on the CSIC HTTP dataset, a commonly used benchmark in the field. Meanwhile, the Naive Bayes classifier proves the most efficient, taking the least computational time when differentiating between malicious and benign HTTP requests. These findings may help direct future efforts towards more efficient, machine learning-driven defenses against web application attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mikheeva, O.I., Gatchin Yuri, A., Savkov, S.V., Khammatova, R.M., et al.: Search methods for abnormal activities of web applications. J. Sci. Tech. Inf. Technol. Mech. Optics 126(2), 233–242 (2020)

    Google Scholar 

  2. Holz, T., Marechal, S., Raynal, F.: New threats and attacks on the world wide web. IEEE Secur. Priv. 4(2), 72–75 (2006)

    Article  Google Scholar 

  3. Moshchuk, A., Bragin, T., Deville, D., Gribble, S.D., Levy, H.M.: SpyProxy: Execution-based detection of malicious web content. In: USENIX Security Symposium, pp. 1–16 (2007)

    Google Scholar 

  4. Tekerek, A.: A novel architecture for web-based attack detection using convolutional neural network. Comput. Secur. 100, 102096 (2021)

    Article  Google Scholar 

  5. Huang, Y., Li, T., Zhang, L., Li, B., Liu, X.: JSContana: malicious javascript detection using adaptable context analysis and key feature extraction. Comput. Secur. 104, 102218 (2021)

    Article  Google Scholar 

  6. Phung, N.M., Mimura, M.: Detection of malicious javascript on an imbalanced dataset. Internet of Things 13, 100357 (2021)

    Article  Google Scholar 

  7. Nithya, V., Pandian, S.L., Malarvizhi, C.: A survey on detection and prevention of cross-site scripting attack. Int. J. Secur. Its Appl. 9(3), 139–152 (2015)

    Google Scholar 

  8. Tariq, I., Sindhu, M.A., Abbasi, R.A., Khattak, A.S., Maqbool, O., Siddiqui, G.F.: Resolving cross-site scripting attacks through genetic algorithm and reinforcement learning. Expert Syst. Appl. 168, 114386 (2021)

    Article  Google Scholar 

  9. Jeitner, P., Shulman, H.: Injection attacks reloaded: tunnelling malicious payloads over DNS. In: 30th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 21), pp. 3165–3182 (2021)

    Google Scholar 

  10. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with instruction-set randomization. In: Proceedings of the 10th ACM conference on Computer and communications security, pp. 272–280 (2003)

    Google Scholar 

  11. Hazel, P.: Perl compatible regular expressions, The University of Cambridge, p. 114 (2012)

    Google Scholar 

  12. Erlacher, F., Dressler, F.: On high-speed flow-based intrusion detection using snort-compatible signatures. IEEE Trans. Dependable Secur. Comput

    Google Scholar 

  13. Fredj, O.B., Cheikhrouhou, O., Krichen, M., Hamam, H., Derhab, A.: An OWASP top ten driven survey on web application protection methods. In: Garcia-Alfaro, J., Leneutre, J., Cuppens, N., Yaich, R. (eds.) CRiSIS 2020. LNCS, vol. 12528, pp. 235–252. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68887-5_14

    Chapter  Google Scholar 

  14. Perl-compatible regular expressions (PCRE), http://www.pcre.org (2021)

  15. Kozik, R., Choraś, M., Renk, R., Hołubowicz, W.: A proposal of algorithm for web applications cyber attack detection. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol. 8838, pp. 680–687. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45237-0_61

    Chapter  Google Scholar 

  16. Sharma, S., Zavarsky, P., Butakov, S.: Machine learning based intrusion detection system for web-based attacks. In: 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), IEEE, pp. 227–230 (2020)

    Google Scholar 

  17. Oumaima, C., Abdeslam, R., Yassine, S., Abderrazek, F.: Experimental study on the effectiveness of machine learning methods in web intrusion detection. In: Maleh, Y., Alazab, M., Gherabi, N., Tawalbeh, L., Abd El-Latif, A.A. (eds.) ICI2C 2021. LNNS, vol. 357, pp. 486–494. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91738-8_44

    Chapter  Google Scholar 

  18. J. Offutt, Y. Wu, X. Du, H. Huang, Bypass testing of web applications. In: 15th International Symposium on Software Reliability Engineering, IEEE, pp. 187–197 (2004)

    Google Scholar 

  19. Sun, F., Zhang, P., White, J., Schmidt, D., Staples, J., Krause, L.: A feasibility study of autonomically detecting in-process cyber-attacks. In: 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), IEEE, pp. 1–8 (2017)

    Google Scholar 

  20. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and malicious JavaScript code. In: Proceedings of the 19th international conference on World wide web, pp. 281–290 (2010)

    Google Scholar 

  21. Pazos, J.C., Légaré, J.-S., Beschastnikh, I.: XSnare: application-specific client-side cross-site scripting protection. In: 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, pp. 154–165 (2021)

    Google Scholar 

  22. Johns, M., Engelmann, B., Posegga, J., Xssds: Server-side detection of cross-site scripting attacks. In: Annual Computer Security Applications Conference (ACSAC). IEEE, vol. 2008, pp. 335–344 (2008)

    Google Scholar 

  23. Fang, Y., Li, Y., Liu, L., Huang, C.: DeepXSS: cross site scripting detection based on deep learning. In: Proceedings of the 2018 International Conference on Computing and Artificial Intelligence, pp. 47–51 (2018)

    Google Scholar 

  24. Rodríguez, G.E., Torres, J.G., Flores, P., Benavides, D.E.: Cross-site scripting (XSS) attacks and mitigation: a survey. Comput. Netw. 166, 106960 (2020)

    Article  Google Scholar 

  25. Kaur, G., Malik, Y., Samuel, H., Jaafar, F.: Detecting blind cross-site scripting attacks using machine learning. In: Proceedings of the 2018 International Conference on Signal Processing and Machine Learning, pp. 22–25 (2018)

    Google Scholar 

  26. Kemalis, K., Tzouramanis, T.: SQL-IDS: a specification-based approach for SQL-injection detection. In: Proceedings of the 2008 ACM symposium on Applied computing, pp. 2153–2158 (2008)

    Google Scholar 

  27. Zhang, L., Zhang, D., Wang, C., Zhao, J., Zhang, Z.: ART4SQLI: the art of SQL injection vulnerability discovery. IEEE Trans. Reliab. 68(4), 1470–1489 (2019)

    Article  Google Scholar 

  28. Medeiros, I., Beatriz, M., Neves, N., Correia, M.: SEPTIC: detecting injection attacks and vulnerabilities inside the DBMS. IEEE Trans. Reliab. 68(3), 1168–1188 (2019)

    Article  Google Scholar 

  29. Fredj, O.B.: SPHERES: an efficient server-side web application protection system. Int. J. Inf. Comput. Secur. 11(1), 33–60 (2019)

    Google Scholar 

  30. Zhuo, Z., Cai, T., Zhang, X., Lv, F.: Long short-term memory on abstract syntax tree for SQL injection detection. IET Softw. 15(2), 188–197 (2021)

    Article  Google Scholar 

  31. Li, Q., Li, W., Wang, J., Cheng, M.: A SQL injection detection method based on adaptive deep forest. IEEE Access 7, 145385–145394 (2019)

    Article  Google Scholar 

  32. Gu, H., et al.: DIAVA: a traffic-based framework for detection of SQL injection attacks and vulnerability analysis of leaked data. IEEE Trans. Reliab. 69(1), 188–202 (2019)

    Article  Google Scholar 

  33. Batista, L.O.: Fuzzy neural networks to create an expert system for detecting attacks by SQL injection, arXiv preprint arXiv:1901.02868

  34. Fang, Y., Peng, J., Liu, L., Huang, C.: WOVSQLI: detection of SQL injection behaviors using word vector and LSTM. In: Proceedings of the 2nd International Conference on Cryptography, Security and Privacy, pp. 170–174 (2018)

    Google Scholar 

  35. Liu, M., Li, K., Chen, T.: DeepSQLi: deep semantic learning for testing SQL injection. In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 286–297 (2020)

    Google Scholar 

  36. D. Chen, Q. Yan, C. Wu, J. Zhao, Sql injection attack detection and prevention techniques using deep learning. J. Phys. Conf. Series 1757, 012055 IOP Publishing (2021)

    Google Scholar 

  37. Nguyen, H.T., Torrano-Gimenez, C., Alvarez, G., Petrović, S., Franke, K.: Application of the generic feature selection measure in detection of web attacks. In: Herrero, Á., Corchado, E. (eds.) CISIS 2011. LNCS, vol. 6694, pp. 25–32. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21323-6_4

    Chapter  Google Scholar 

  38. Yavanoglu, O., Aydos, M.: A review on cyber security datasets for machine learning algorithms. In: IEEE International Conference on Big Data (big data). IEEE, vol. 2017, pp. 2186–2193 (2017)

    Google Scholar 

  39. Kascheev, S., Olenchikova, T.: The detecting cross-site scripting (XSS) using machine learning methods. In: Global Smart Industry Conference (GloSIC). IEEE, vol. 2020, pp. 265–270 (2020)

    Google Scholar 

  40. Mereani, F.A., Howe, J.M.: Detecting cross-site scripting attacks using machine learning. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) AMLTA 2018. AISC, vol. 723, pp. 200–210. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74690-6_20

    Chapter  Google Scholar 

  41. Halfond, W.G., Viegas, J., Orso, A., et al.: A classification of SQL-injection attacks and countermeasures. In: Proceedings of the IEEE International Symposium on Secure Software Engineering, IEEE, vol. 1, pp. 13–15 (2006)

    Google Scholar 

  42. Saritas, M.M., Yasar, A.: Performance analysis of ANN and naive Bayes classification algorithm for data classification. Int. J. Intell. Syst. Appl. Eng. 7(2), 88–91 (2019)

    Article  Google Scholar 

  43. Garg, A., Roth, D.: Understanding probabilistic classifiers. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 179–191. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_16

    Chapter  Google Scholar 

  44. Kulkarni, C.C., Kulkarni, S.: Human agent knowledge transfer applied to web security. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), IEEE, pp. 1–4 (2013)

    Google Scholar 

  45. Zhang, H.: The optimality of naive Bayes. Aa 1(2), 3 (2004)

    Google Scholar 

  46. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. A J. Chemom. Soc. 18(6), 275–285 (2004)

    Google Scholar 

  47. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  48. Howe, J., Mereani, F.: Detecting cross-site scripting attacks using machine learning. In: Advances in Intelligent Systems and Computing 723

    Google Scholar 

  49. Zhang, Z.: Introduction to machine learning: k-nearest neighbors. Anna. Transl. Med. 4(11)

    Google Scholar 

  50. Bhor, R., Khanuja, H.: Analysis of web application security mechanism and attack detection using vulnerability injection technique. In: 2016 International Conference on Computing Communication Control and automation (ICCUBEA), IEEE, pp. 1–6 (2016)

    Google Scholar 

  51. Jakkula, V.: Tutorial on support vector machine (SVM), School of EECS, Washington State University 37

    Google Scholar 

  52. Rawat, R., Shrivastav, S.K.: SQL injection attack detection using SVM. Int. J. Comput. Appl. 42(13), 1–4 (2012)

    Google Scholar 

  53. Braspenning, P.J., Thuijsman, F., Weijters, A.J.M.M. (eds.): Neural Network School 1999. LNCS, vol. 931. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0027019

    Book  Google Scholar 

  54. Manzoor, I., Kumar, N., et al.: A feature reduced intrusion detection system using ANN classifier. Expert Syst. Appl. 88, 249–257 (2017)

    Article  Google Scholar 

  55. CSIC 2010 Dataset, https://petescully.co.uk/research/csic-2010-http-dataset-in-csv-format-for-weka-analysis/ (2021)

  56. Bhatnagar, M., Rozinaj, G., Yadav, P.K.: Web intrusion classification system using machine learning approaches. In: International Symposium ELMAR. IEEE, vol. 2022, pp. 57–60 (2022)

    Google Scholar 

  57. Ramos Júnior, L.S., Macêdo, D., Oliveira, A.L.I., Zanchettin, C.: Detecting Malicious HTTP Requests Without Log Parser Using RequestBERT-BiLSTM. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. LNCS(), vol 13654 . Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21689-3_24

  58. Ghazal, S.F., Mjlae, S.A.: Cybersecurity in deep learning techniques: Detecting network attacks. Int. J. Adv. Comput. Sci. Appl. 13(11)

    Google Scholar 

  59. Li, W., Zhang, X.Y.: GBLNet: Detecting Intrusion Traffic with Multi-granularity BiLSTM. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. LNCS, vol 13353. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08760-8_32

  60. Tan, S., Sun, R., Liang, Z.: Detection of malicious web requests using neural networks with multi granularity features. In: Proceedings of the 5th International Conference on Big Data Technologies, pp. 83–89 (2022)

    Google Scholar 

  61. Shaheed, A., Kurdy, M.: Web application firewall using machine learning and features engineering, Secur. Commun. Netw. (2022)

    Google Scholar 

  62. Toprak, S., Yavuz, A.G.: Web application firewall based on anomaly detection using deep learning. Acta Infologica 6(2), 219–244 (2022)

    Google Scholar 

  63. J. J. Davis, A. J. Clark, Data preprocessing for anomaly based network intrusion detection: a review. Comput. Secur. 30(6–7), 353–375 (2011)

    Google Scholar 

  64. Kotsiantis, S.B., Kanellopoulos, D., Pintelas, P.E.: Data preprocessing for supervised leaning. Int. J. Comput. Sci. 1(2), 111–117 (2006)

    Google Scholar 

  65. Performance metrics, https://towardsdatascience.com/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics1ca3e282a2ce (2021)

Download references

Acknowledgment

This work was supported by grant number 12R170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saed Alrabaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ismail, M., Alrabaee, S., Harous, S., Choo, KK.R. (2024). Empirical Evaluations of Machine Learning Effectiveness in Detecting Web Application Attacks. In: Perakovic, D., Knapcikova, L. (eds) Future Access Enablers for Ubiquitous and Intelligent Infrastructures. FABULOUS 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 542. Springer, Cham. https://doi.org/10.1007/978-3-031-50051-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50051-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50050-3

  • Online ISBN: 978-3-031-50051-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics