Skip to main content

Segment Any Building

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14495))

Included in the following conference series:

  • 780 Accesses

Abstract

The identification and segmentation of buildings in remote sensing imagery has consistently been a important point of academic research. This work highlights the effectiveness of using diverse datasets and advanced representation learning models for the purpose of building segmentation in remote sensing images. By fusing various datasets, we have broadened the scope of our learning resources and achieved exemplary performance across several datasets. Our innovative joint training process demonstrates the value of our methodology in various critical areas such as urban planning, disaster management, and environmental monitoring. Our approach, which involves combining dataset fusion techniques and prompts from pre-trained models, sets a new precedent for building segmentation tasks. The results of this study provide a foundation for future exploration and indicate promising potential for novel applications in building segmentation field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  2. Bao, H., Dong, L., Piao, S., Wei, F.: BEiT: BERT pre-training of image transformers. arXiv preprint arXiv:2106.08254 (2021)

  3. Boguszewski, A., Batorski, D., Ziemba-Jankowska, N., Dziedzic, T., Zambrzycka, A.: Landcover. AI: dataset for automatic mapping of buildings, woodlands, water and roads from aerial imagery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1102–1110 (2021)

    Google Scholar 

  4. Chen, J., Yang, Z., Zhang, L.: Semantic segment anything. https://github.com/fudan-zvg/Semantic-Segment-Anything (2023)

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. Cheng, B., Girshick, R., Dollár, P., Berg, A.C., Kirillov, A.: Boundary IoU: Improving object-centric image segmentation evaluation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15334–15342 (2021)

    Google Scholar 

  7. Contributors, M.: MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark. https://github.com/open-mmlab/mmsegmentation (2020)

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  10. Ji, S., Wei, S., Lu, M.: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 57(1), 574–586 (2018)

    Article  Google Scholar 

  11. Jyhne, S., et al.: Mapai: precision in buildingsegmentation (2022)

    Google Scholar 

  12. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  13. Li, L., Zhang, T., Kang, Z., Jiang, X.: Mask-FPAN: semi-supervised face parsing in the wild with de-occlusion and UV GAN. Comput. Graph. 116, 185–193 (2023)

    Article  Google Scholar 

  14. Li, L., Zhang, T., Oehmcke, S., Gieseke, F., Igel, C.: BuildSeg: a general framework for the segmentation of buildings. Nordic Mach. Intell. 2(3) (2022)

    Google Scholar 

  15. Li, Z., Wang, H., Liu, Y.: Semantic segmentation of remote sensing image based on bilateral branch network. Vis. Comput., 1–22 (2023)

    Google Scholar 

  16. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE (2017)

    Google Scholar 

  19. Nazir, A., et al.: ECSU-Net: an embedded clustering sliced u-net coupled with fusing strategy for efficient intervertebral disc segmentation and classification. IEEE Trans. Image Process. 31, 880–893 (2021)

    Article  Google Scholar 

  20. Oehmcke, S., et al.: Deep learning based 3D point cloud regression for estimating forest biomass. In: International Conference on Advances in Geographic Information Systems (SIGSPATIAL). ACM (2022)

    Google Scholar 

  21. Oehmcke, S., et al.: Deep learning based 3D point cloud regression for estimating forest biomass. In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems, pp. 1–4 (2022)

    Google Scholar 

  22. Rahnemoonfar, M., Chowdhury, T., Sarkar, A., Varshney, D., Yari, M., Murphy, R.R.: FloodNet: a high resolution aerial imagery dataset for post flood scene understanding. IEEE Access 9, 89644–89654 (2021)

    Article  Google Scholar 

  23. Revenga, J.C., et al.: Above-ground biomass prediction for croplands at a sub-meter resolution using UAV-lidar and machine learning methods. Remote Sensing 14(16), 3912 (2022)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Wu, M., Li, L., Li, H.: FASE: feature-based similarity search on ECG data. In: 2019 IEEE International Conference on Big Knowledge (ICBK), pp. 273–280. IEEE (2019)

    Google Scholar 

  26. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  27. Zhang, T., Li, L., Cao, S., Pu, T., Peng, Z.: Attention-guided pyramid context networks for detecting infrared small target under complex background. IEEE Trans. Aerospace Electron. Syst. (2023)

    Google Scholar 

  28. Zhang, T., Li, L., Igel, C., Oehmcke, S., Gieseke, F., Peng, Z.: LR-CSNet: low-rank deep unfolding network for image compressive sensing. In: 2022 IEEE 8th International Conference on Computer and Communications (ICCC), pp. 1951–1957. IEEE (2022)

    Google Scholar 

  29. Zhang, Y., Li, L., Song, L., Xie, R., Zhang, W.: FACT: fused attention for clothing transfer with generative adversarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12894–12901 (2020)

    Google Scholar 

  30. Zhou, C., et al.: Multi-scale pseudo labeling for unsupervised deep edge detection. Available at SSRN 4425635

    Google Scholar 

Download references

Acknowledgments

This work was supported by the DeepCrop project and PerformLCA project (UCPH Strategic plan 2023 Data+ Pool).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L. (2024). Segment Any Building. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50069-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50068-8

  • Online ISBN: 978-3-031-50069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics