Abstract
The identification and segmentation of buildings in remote sensing imagery has consistently been a important point of academic research. This work highlights the effectiveness of using diverse datasets and advanced representation learning models for the purpose of building segmentation in remote sensing images. By fusing various datasets, we have broadened the scope of our learning resources and achieved exemplary performance across several datasets. Our innovative joint training process demonstrates the value of our methodology in various critical areas such as urban planning, disaster management, and environmental monitoring. Our approach, which involves combining dataset fusion techniques and prompts from pre-trained models, sets a new precedent for building segmentation tasks. The results of this study provide a foundation for future exploration and indicate promising potential for novel applications in building segmentation field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)
Bao, H., Dong, L., Piao, S., Wei, F.: BEiT: BERT pre-training of image transformers. arXiv preprint arXiv:2106.08254 (2021)
Boguszewski, A., Batorski, D., Ziemba-Jankowska, N., Dziedzic, T., Zambrzycka, A.: Landcover. AI: dataset for automatic mapping of buildings, woodlands, water and roads from aerial imagery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1102–1110 (2021)
Chen, J., Yang, Z., Zhang, L.: Semantic segment anything. https://github.com/fudan-zvg/Semantic-Segment-Anything (2023)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Cheng, B., Girshick, R., Dollár, P., Berg, A.C., Kirillov, A.: Boundary IoU: Improving object-centric image segmentation evaluation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15334–15342 (2021)
Contributors, M.: MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark. https://github.com/open-mmlab/mmsegmentation (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Ji, S., Wei, S., Lu, M.: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 57(1), 574–586 (2018)
Jyhne, S., et al.: Mapai: precision in buildingsegmentation (2022)
Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)
Li, L., Zhang, T., Kang, Z., Jiang, X.: Mask-FPAN: semi-supervised face parsing in the wild with de-occlusion and UV GAN. Comput. Graph. 116, 185–193 (2023)
Li, L., Zhang, T., Oehmcke, S., Gieseke, F., Igel, C.: BuildSeg: a general framework for the segmentation of buildings. Nordic Mach. Intell. 2(3) (2022)
Li, Z., Wang, H., Liu, Y.: Semantic segmentation of remote sensing image based on bilateral branch network. Vis. Comput., 1–22 (2023)
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE (2017)
Nazir, A., et al.: ECSU-Net: an embedded clustering sliced u-net coupled with fusing strategy for efficient intervertebral disc segmentation and classification. IEEE Trans. Image Process. 31, 880–893 (2021)
Oehmcke, S., et al.: Deep learning based 3D point cloud regression for estimating forest biomass. In: International Conference on Advances in Geographic Information Systems (SIGSPATIAL). ACM (2022)
Oehmcke, S., et al.: Deep learning based 3D point cloud regression for estimating forest biomass. In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems, pp. 1–4 (2022)
Rahnemoonfar, M., Chowdhury, T., Sarkar, A., Varshney, D., Yari, M., Murphy, R.R.: FloodNet: a high resolution aerial imagery dataset for post flood scene understanding. IEEE Access 9, 89644–89654 (2021)
Revenga, J.C., et al.: Above-ground biomass prediction for croplands at a sub-meter resolution using UAV-lidar and machine learning methods. Remote Sensing 14(16), 3912 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Wu, M., Li, L., Li, H.: FASE: feature-based similarity search on ECG data. In: 2019 IEEE International Conference on Big Knowledge (ICBK), pp. 273–280. IEEE (2019)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)
Zhang, T., Li, L., Cao, S., Pu, T., Peng, Z.: Attention-guided pyramid context networks for detecting infrared small target under complex background. IEEE Trans. Aerospace Electron. Syst. (2023)
Zhang, T., Li, L., Igel, C., Oehmcke, S., Gieseke, F., Peng, Z.: LR-CSNet: low-rank deep unfolding network for image compressive sensing. In: 2022 IEEE 8th International Conference on Computer and Communications (ICCC), pp. 1951–1957. IEEE (2022)
Zhang, Y., Li, L., Song, L., Xie, R., Zhang, W.: FACT: fused attention for clothing transfer with generative adversarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12894–12901 (2020)
Zhou, C., et al.: Multi-scale pseudo labeling for unsupervised deep edge detection. Available at SSRN 4425635
Acknowledgments
This work was supported by the DeepCrop project and PerformLCA project (UCPH Strategic plan 2023 Data+ Pool).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, L. (2024). Segment Any Building. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-50069-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50068-8
Online ISBN: 978-3-031-50069-5
eBook Packages: Computer ScienceComputer Science (R0)