Skip to main content

Weakly Supervised Method for Domain Adaptation in Instance Segmentation

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14495))

Included in the following conference series:

  • 207 Accesses

Abstract

The domain adaptation of an instance segmentation model has gained much attention. However, manual annotation is tedious and self-training contains too much pseudolabel noise. Inspired by weakly supervised methods, we propose a method to handle these challenges by limited verification signals and label propagation. Semantic trees are constructed to explore the relation between samples by using a clustering method; Then, reliable pseudolabels are verified and propagated to unreliable labels, which improves instance segmentation model by employing the updated samples. Experiments on public datasets demonstrate that the proposed approach is competitive with state-of-the-art approaches.

J. Sun and Y. Tian— Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, R., et al.: Optic disk and cup segmentation through fuzzy broad learning system for glaucoma screening. IEEE Trans. Industr. Inf. 17(4), 2476–2487 (2020)

    Article  MathSciNet  Google Scholar 

  2. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE/CVF in Proceedings on Computer Vision and Pattern Recognition, pp. 1290–1299 (2022)

    Google Scholar 

  3. Dogan, A., Birant, D.: K-centroid link: a novel hierarchical clustering linkage method. Appl. Intell. 52(5), 5537–5560 (2021). https://doi.org/10.1007/s10489-021-02624-8

    Article  Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International in Proceedings on Machine Learning, pp. 1180–1189 (2015)

    Google Scholar 

  6. Hanselmann, N., Schneider, N., Ortelt, B., Geiger, A.: Learning cascaded detection tasks with weakly-supervised domain adaptation. In: IEEE Intelligent Vehicles Symposium, pp. 532–539 (2021)

    Google Scholar 

  7. Hsu, J., Chiu, W., Yeung, S.: DARCNN: domain adaptive region-based convolutional neural network for unsupervised instance segmentation in biomedical images. In: Proceedings of the IEEE/CVF in Proceedings on Computer Vision and Pattern Recognition, pp. 1003–1012 (2021)

    Google Scholar 

  8. Jia, Z., Li, Y., Tan, Z., Wang, W., Wang, Z., Yin, G.: Domain-invariant feature extraction and fusion for cross-domain person re-identification. Vis. Comput. 39(3), 1205–1216 (2023)

    Article  Google Scholar 

  9. Kong, X., Xia, S., Liu, N., Wei, M.: GADA-SegNet: gated attentive domain adaptation network for semantic segmentation of lidar point clouds. Vis. Comput., 1–11 (2023). https://doi.org/10.1007/s00371-023-02799-w

  10. Li, C., et al.: Domain adaptive nuclei instance segmentation and classification via category-aware feature alignment and pseudo-labelling. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention, pp. 715–724 (2022)

    Google Scholar 

  11. Li, C., et al.: Spatial attention pyramid network for unsupervised domain adaptation. In: Proceedings of the European in Proceedings on Computer Vision, pp. 481–497 (2020)

    Google Scholar 

  12. Li, T., Rezaeipanah, A., El Din, E.M.T.: An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement. J. King Saud Univ.-Comput. Inf. Sci. 34(6), 3828–3842 (2022)

    Google Scholar 

  13. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  14. Liu, D., Zhang, D., Song, Y.: Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting. In: Proceedings of the IEEE/CVF in Proceedings on Computer Vision and Pattern Recognition, pp. 4243–4252 (2020)

    Google Scholar 

  15. Liu, D., et al.: PDAM: a panoptic-level feature alignment framework for unsupervised domain adaptive instance segmentation in microscopy images. IEEE Trans. Med. Imaging 40(1), 154–165 (2020)

    Article  Google Scholar 

  16. Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y.: Swin transformer v2: scaling up capacity and resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12009–12019 (2022)

    Google Scholar 

  17. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  18. Ljosa, V., Sokolnicki, K.L., Carpenter, A.E.: Annotated high-throughput microscopy image sets for validation. Nat. Methods 9(7), 637–637 (2012)

    Article  Google Scholar 

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International in Proceedings on Learning Representations, pp. 1526–1537 (2019)

    Google Scholar 

  20. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2018)

    Article  Google Scholar 

  21. Sharma, Y., Syed, S., Brown, D.E.: MaNi: Maximizing mutual information for nuclei cross-domain unsupervised segmentation. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention, pp. 345–355 (2022). https://doi.org/10.1007/978-3-031-16434-7_34

  22. Shen, Y.: Domain-invariant interpretable fundus image quality assessment. Med. Image Anal. 61, 101654 (2020)

    Article  Google Scholar 

  23. Srivastav, V., Gangi, A., Padoy, N.: Unsupervised domain adaptation for clinician pose estimation and instance segmentation in the operating room. Med. Image Anal. 80, 102525 (2022)

    Article  Google Scholar 

  24. Tian, Y., et al.: Global context assisted structure-aware vehicle retrieval. IEEE Trans. Intell. Transp. Syst. 21(10), 1–10 (2021)

    Google Scholar 

  25. Tian, Y., Cheng, G., Gelernter, J., Yu, S., Song, C., Yang, B.: Joint temporal context exploitation and active learning for video segmentation. Pattern Recogn. 100, 107158 (2020)

    Article  Google Scholar 

  26. Tian, Y., Gelernter, J., Wang, X., Li, J., Yu, Y.: Traffic sign detection using a multi-scale recurrent attention network. IEEE Trans. Intell. Transp. Syst. 20(12), 4466–4475 (2019)

    Article  Google Scholar 

  27. Tian, Y., Wang, X., Wu, J., Wang, R.: Multi-scale hierarchical residual network for dense captioning. J. Artif. Intell. Res. 64, 181–196 (2019)

    Article  MathSciNet  Google Scholar 

  28. Tian, Y., et al.: 3D tooth instance segmentation learning objectness and affinity in point cloud. ACM Trans. Multimed. Comput. Commun. Appl. 18, 202–211 (2022)

    Article  Google Scholar 

  29. Tian, Y., Zhang, Y., Zhou, D., Cheng, G., Chen, W.G., Wang, R.: Triple attention network for video segmentation. Neurocomputing 417, 202–211 (2020)

    Article  Google Scholar 

  30. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE in Proceedings on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  31. Varshney, A.K., Muhuri, P.K.: PIFHC: the probabilistic intuitionistic fuzzy hierarchical clustering algorithm. Appl. Soft Comput. 120, 108584 (2022)

    Article  Google Scholar 

  32. Yang, J., Li, C., Zhang, P., Dai, X., Xiao, B.: Focal self-attention for local-global interactions in vision transformers. arXiv preprint arXiv:2107.00641 (2021)

  33. Yang, S., Zhang, J., Huang, J., Lovell, B.C., Han, X.: Minimizing labeling cost for nuclei instance segmentation and classification with cross-domain images and weak labels. In: Proceedings of the AAAI in Proceedings on Artificial Intelligence, pp. 697–705 (2021)

    Google Scholar 

  34. Zhou, D., Tian, Y., Chen, W.G.: Self-supervised saliency estimation for pixel embedding in road detection. IEEE Signal Process. Lett. 28, 1325–1329 (2021)

    Article  Google Scholar 

  35. Zhu, Y., et al.: Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE/CVF in Proceedings on Computer Vision and Pattern Recognition, pp. 8856–8865 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61976188, 61972351, 62111530300). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J. et al. (2024). Weakly Supervised Method for Domain Adaptation in Instance Segmentation. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50069-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50068-8

  • Online ISBN: 978-3-031-50069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics