Skip to main content

SPC-Net: Structure-Aware Pixel-Level Contrastive Learning Network for OCTA A/V Segmentation and Differentiation

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14495))

Included in the following conference series:

  • 215 Accesses

Abstract

Recent studies have indicated that morphological changes in retinal vessels are associated with many ophthalmic diseases, which have different impacts on arteries and veins (A/V) respectively. To this end, retinal vessel segmentation and further A/V classification are essential for quantitative analysis of related diseases. OCTA is a newly non-invasive vascular imaging technique that provides visualization of microvasculatures with higher resolution than traditional fundus imaging modality. Recently, the task of A/V classification has attracted a lot of attention in the field of OCTA imaging. However, there exist two main challenges in this task. On one hand, there is a lack of intensity information in OCTA images to differentiate between arteries and veins. On the other hand, signal fluctuations during OCTA imaging could also bring about vessel discontinuity. In this paper, we propose a novel Structure-aware Pixel-level Contrastive learning network (SPC-Net) for A/V classification. In the proposed SPC-Net, a latent alignment-based network is first utilized to produce a vessel segmentation map in the original OCTA images. Then a pixel-level contrast learning-based network is used to further differentiate between arteries and veins according to the topology of vessels. This network adopts a novel pixel-level contrast learning topology loss to accurately classify the vessel pixels into arteries and veins by taking full account of global semantic similarity. The experimental results demonstrate the superiority of our method compared with the existing state-of-the-art methods respectively on one public OCTA dataset and one in-house OCTA dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)

    Article  Google Scholar 

  2. Alam, M.N., Le, D., Yao, X.: Differential artery-vein analysis in quantitative retinal imaging: a review. Quant. Imaging Med. Surg. 11(3), 1102 (2021)

    Article  Google Scholar 

  3. Ali, S.G., et al.: Cost-effective broad learning-based ultrasound biomicroscopy with 3D reconstruction for ocular anterior segmentation. Multimedia Tools Appl. 80, 35105–35122 (2021)

    Article  Google Scholar 

  4. Balaratnasingam, C., et al.: Comparisons between histology and optical coherence tomography angiography of the periarterial capillary-free zone. Am. J. Ophthalmol. 189, 55–64 (2018)

    Article  Google Scholar 

  5. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation (2021)

    Google Scholar 

  6. Cao, H., et al.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: Proceedings of the European Conference on Computer Vision Workshops(ECCVW) (2022)

    Google Scholar 

  7. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  8. Chmura Kraemer, H., Periyakoil, V.S., Noda, A.: Kappa coefficients in medical research. Stat. Med. 21(14), 2109–2129 (2002)

    Article  Google Scholar 

  9. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 1–11 (2021)

    Article  Google Scholar 

  10. Dashtbozorg, B., Mendonça, A.M., Campilho, A.: An automatic graph-based approach for artery/vein classification in retinal images. IEEE Trans. Image Process. 23(3), 1073–1083 (2013)

    Article  MathSciNet  Google Scholar 

  11. De Carlo, T.E., Romano, A., Waheed, N.K., Duker, J.S.: A review of optical coherence tomography angiography (OCTA). Int. J. Retina Vitreous 1(1), 1–15 (2015)

    Article  Google Scholar 

  12. Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote. Sens. 162, 94–114 (2020)

    Article  Google Scholar 

  13. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer vision, pp. 1422–1430 (2015)

    Google Scholar 

  14. Espíndola, R.P., Ebecken, N.F.: On extending F-measure and G-mean metrics to multi-class problems. WIT Trans. Inf. Commun. Technol. 35, 25–34 (2005)

    Google Scholar 

  15. Estrada, R., Allingham, M.J., Mettu, P.S., Cousins, S.W., Tomasi, C., Farsiu, S.: Retinal artery-vein classification via topology estimation. IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015)

    Article  Google Scholar 

  16. Gao, M., et al.: A deep learning network for classifying arteries and veins in montaged widefield oct angiograms. Ophthalmol. Sci. 2(2), 100149 (2022)

    Article  MathSciNet  Google Scholar 

  17. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  18. Gu, Z., et al.: CE-Net: Context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  19. Guindon, B., Zhang, Y.: Application of the dice coefficient to accuracy assessment of object-based image classification. Can. J. Remote. Sens. 43(1), 48–61 (2017)

    Article  Google Scholar 

  20. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  21. Hu, J., et al.: Automatic artery/vein classification using a vessel-constraint network for multicenter fundus images. Front. Cell Dev. Biol. 9, 659941 (2021)

    Google Scholar 

  22. Ishibazawa, A., et al.: Accuracy and reliability in differentiating retinal arteries and veins using widefield En face oct angiography. Transl. Vis. Sci. Technol. 8(3), 60–60 (2019)

    Article  Google Scholar 

  23. Jiqing, C., Depeng, W., Teng, L., Tian, L., Huabin, W.: All-weather road drivable area segmentation method based on cycleGAN. Vis. Comput. 39(12), 1–17 (2022)

    Google Scholar 

  24. Joshi, V.S., Reinhardt, J.M., Garvin, M.K., Abramoff, M.D.: Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks. PLoS ONE 9(2), e88061 (2014)

    Article  Google Scholar 

  25. Kang, H., Gao, Y., Guo, S., Xu, X., Li, T., Wang, K.: AVNet: a retinal artery/vein classification network with category-attention weighted fusion. Comput. Methods Programs Biomed. 195, 105629 (2020)

    Article  Google Scholar 

  26. Karlsson, R.A., Hardarson, S.H.: Artery vein classification in fundus images using serially connected U-Nets. Comput. Methods Programs Biomed. 216, 106650 (2022)

    Google Scholar 

  27. Khanh, T.L.B., et al.: Enhancing U-Net with spatial-channel attention gate for abnormal tissue segmentation in medical imaging. Appl. Sci. 10(17), 5729 (2020)

    Article  Google Scholar 

  28. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  29. Li, M., et al.: Image projection network: 3D to 2D image segmentation in octa images. IEEE Trans. Med. Imaging 39(11), 3343–3354 (2020)

    Article  Google Scholar 

  30. Li, M., et al.: IPN-V2 and OCTA-500: Methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)

  31. Liu, R., et al.: DeepDRiD: diabetic retinopathy–grading and image quality estimation challenge. Patterns 3(6), 100512 (2022)

    Google Scholar 

  32. Ma, W., Yu, S., Ma, K., Wang, J., Ding, X., Zheng, Y.: Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 769–778. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_85

    Chapter  Google Scholar 

  33. Ma, Y., et al.: Rose: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imaging 40(3), 928–939 (2020)

    Article  Google Scholar 

  34. Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80

    Chapter  Google Scholar 

  35. Nazir, A., et al.: ECSU-Net: an embedded clustering sliced U-Net coupled with fusing strategy for efficient intervertebral disc segmentation and classification. IEEE Trans. Image Process. 31, 880–893 (2021)

    Article  Google Scholar 

  36. Nguyen, T.T., Wong, T.Y.: Retinal vascular changes and diabetic retinopathy. Curr. Diab.Rep. 9(4), 277–283 (2009)

    Article  Google Scholar 

  37. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  38. Relan, D., MacGillivray, T., Ballerini, L., Trucco, E.: Automatic retinal vessel classification using a least square-support vector machine in vampire. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 142–145. IEEE (2014)

    Google Scholar 

  39. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  40. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  41. Tan, X., et al.: OCT2Former: a retinal oct-angiography vessel segmentation transformer. Comput. Methods Programs Biomed. 233, 107454 (2023)

    Article  Google Scholar 

  42. Vázquez, S., Barreira, N., Penedo, M.G., Ortega, M., Pose-Reino, A.: Improvements in retinal vessel clustering techniques: towards the automatic computation of the Arterio venous ratio. Computing 90(3), 197–217 (2010)

    Article  Google Scholar 

  43. Wang, W., Zhou, T., Yu, F., Dai, J., Konukoglu, E., Van Gool, L.: Exploring cross-image pixel contrast for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7303–7313 (2021)

    Google Scholar 

  44. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  45. Xie, J., et al.: Classification of retinal vessels into Artery-Vein in OCT angiography guided by fundus images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 117–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_12

    Chapter  Google Scholar 

  46. Xu, X., et al.: Differentiating veins from arteries on optical coherence tomography angiography by identifying deep capillary plexus vortices. Am. J. Ophthalmol. 207, 363–372 (2019)

    Article  Google Scholar 

  47. Xu, X., et al.: AV-casNet: fully automatic arteriole-venule segmentation and differentiation in OCT angiography. IEEE Trans. Med. Imaging 42(2), 481–492 (2022)

    Google Scholar 

  48. Yan, G., Zhengyan, Z., Zhihua, C., Chuang, Z., Jin, Z.: CGAN: lightweight and feature aggregation network for high-performance interactive image segmentation. Vis. Comput. 1–15 (2023)

    Google Scholar 

  49. Yatsuya, H., Folsom, A.R., Wong, T.Y., Klein, R., Klein, B.E., Sharrett, A.R.: Retinal microvascular abnormalities and risk of lacunar stroke: atherosclerosis risk in communities study. Stroke 41(7), 1349–1355 (2010)

    Article  Google Scholar 

  50. Yin, B., et al.: Vessel extraction from non-fluorescein fundus images using orientation-aware detector. Med. Image Anal. 26(1), 232–242 (2015)

    Article  Google Scholar 

  51. Zhang, S., Yin, B., Zhang, W., Cheng, Y.: Topology aware deep learning for wireless network optimization. IEEE Trans. Wireless Commun. 21(11), 9791–9805 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Hao, H., Ma, Y., Guo, L., Zhang, J., Zhao, Y. (2024). SPC-Net: Structure-Aware Pixel-Level Contrastive Learning Network for OCTA A/V Segmentation and Differentiation. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50069-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50068-8

  • Online ISBN: 978-3-031-50069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics