Skip to main content

Hierarchical Edge Aware Learning for 3D Point Cloud

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14495))

Included in the following conference series:

  • 893 Accesses

Abstract

This paper proposes an innovative approach to Hierarchical Edge Aware 3D Point Cloud Learning (HEA-Net) that seeks to address the challenges of noise in point cloud data, and improve object recognition and segmentation by focusing on edge features. In this study, we present an innovative edge-aware learning methodology, specifically designed to enhance point cloud classification and segmentation. Drawing inspiration from the human visual system, the concept of edge-awareness has been incorporated into this methodology, contributing to improved object recognition while simultaneously reducing computational time. Our research has led to the development of an advanced 3D point cloud learning framework that effectively manages object classification and segmentation tasks. A unique fusion of local and global network learning paradigms has been employed, enriched by edge-focused local and global embeddings, thereby significantly augmenting the model’s interpretative prowess. Further, we have applied a hierarchical transformer architecture to boost point cloud processing efficiency, thus providing nuanced insights into structural understanding. Our approach demonstrates significant promise in managing noisy point cloud data and highlights the potential of edge-aware strategies in 3D point cloud learning. The proposed approach is shown to outperform existing techniques in object classification and segmentation tasks, as demonstrated by experiments on ModelNet40 and ShapeNet datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  2. Cheng, S., Chen, X., He, X., Liu, Z., Bai, X.: PRA-Net: point relation-aware network for 3D point cloud analysis. IEEE Trans. Image Process. 30, 4436–4448 (2021)

    Article  Google Scholar 

  3. Dovrat, O., Lang, I., Avidan, S.: Learning to sample. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2760–2769 (2019)

    Google Scholar 

  4. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (1997)

    Article  Google Scholar 

  5. Engel, N., Belagiannis, V., Dietmayer, K.: Point transformer. IEEE Access 9, 134826–134840 (2021)

    Article  Google Scholar 

  6. Lai, X., et al.: Stratified transformer for 3D point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8500–8509 (2022)

    Google Scholar 

  7. Lang, I., Manor, A., Avidan, S.: SampleNet: differentiable point cloud sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7578–7588 (2020)

    Google Scholar 

  8. Li, J., et al.: Automatic detection and classification system of domestic waste via multimodel cascaded convolutional neural network. IEEE Trans. Industr. Inf. 18(1), 163–173 (2021)

    Article  Google Scholar 

  9. Li, L., Zhang, T., Kang, Z., Jiang, X.: Mask-FPAN: semi-supervised face parsing in the wild with de-occlusion and UV GAN. Comput. Graph. 116, 185–193 (2023)

    Article  Google Scholar 

  10. Li, L., Zhang, T., Oehmcke, S., Gieseke, F., Igel, C.: BuildSeg: a general framework for the segmentation of buildings. Nordic Mach. Intell. 2(3) (2022)

    Google Scholar 

  11. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  12. Lin, Y., Huang, Y., Zhou, S., Jiang, M., Wang, T., Lei, Y.: DA-Net: density-adaptive downsampling network for point cloud classification via end-to-end learning. In: 2021 4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), pp. 13–18. IEEE (2021)

    Google Scholar 

  13. Muzahid, A., Wan, W., Sohel, F., Wu, L., Hou, L.: CurveNet: curvature-based multitask learning deep networks for 3D object recognition. IEEE/CAA J. Automatica Sinica 8(6), 1177–1187 (2020)

    Article  Google Scholar 

  14. Oehmcke, S., et al.: Deep learning based 3D point cloud regression for estimating forest biomass. In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems (SIGSPATIAL), pp. 1–4. ACM (2022)

    Google Scholar 

  15. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  16. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Qian, Y., Hou, J., Zhang, Q., Zeng, Y., Kwong, S., He, Y.: MOPS-Net: a matrix optimization-driven network for task-oriented 3D point cloud downsampling. arXiv preprint arXiv:2005.00383 (2020)

  18. Revenga, J.C., et al.: Above-ground biomass prediction for croplands at a sub-meter resolution using UAV-LiDAR and machine learning methods. Remote Sens. 14(16), 3912 (2022)

    Article  Google Scholar 

  19. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)

    Google Scholar 

  20. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  21. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  22. Wiersma, R., Nasikun, A., Eisemann, E., Hildebrandt, K.: DeltaConv: anisotropic point cloud learning with exterior calculus. arXiv preprint arXiv:2111.08799 (2021)

  23. Wu, C., Zheng, J., Pfrommer, J., Beyerer, J.: Attention-based point cloud edge sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5333–5343 (2023)

    Google Scholar 

  24. Wu, M., Li, L., Li, H.: FASE: feature-based similarity search on ECG data. In: 2019 IEEE International Conference on Big Knowledge (ICBK), pp. 273–280. IEEE (2019)

    Google Scholar 

  25. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

    Google Scholar 

  26. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  27. Xu, M., Ding, R., Zhao, H., Qi, X.: PAConv: position adaptive convolution with dynamic kernel assembling on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3173–3182 (2021)

    Google Scholar 

  28. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Yu.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 90–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_6

    Chapter  Google Scholar 

  29. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5589–5598 (2020)

    Google Scholar 

  30. Zhang, T., Li, L., Cao, S., Pu, T., Peng, Z.: Attention-guided pyramid context networks for detecting infrared small target under complex background. IEEE Trans. Aerosp. Electron. Syst. 59(4), 4250–4261 (2023). https://doi.org/10.1109/TAES.2023.3238703

    Article  Google Scholar 

  31. Zhang, T., Li, L., Igel, C., Oehmcke, S., Gieseke, F., Peng, Z.: LR-CSNet: low-rank deep unfolding network for image compressive sensing. In: 2022 IEEE 8th International Conference on Computer and Communications (ICCC), pp. 1951–1957. IEEE (2022)

    Google Scholar 

  32. Zhang, Y., Li, L., Song, L., Xie, R., Zhang, W.: FACT: fused attention for clothing transfer with generative adversarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12894–12901 (2020)

    Google Scholar 

  33. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  34. Zhou, C., et al.: Multi-scale pseudo labeling for unsupervised deep edge detection (2023). Available at SSRN 4425635

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L. (2024). Hierarchical Edge Aware Learning for 3D Point Cloud. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50069-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50068-8

  • Online ISBN: 978-3-031-50069-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics