Skip to main content

Fine-Grained Web3D Culling-Transmitting-Rendering Pipeline

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14496))

Included in the following conference series:

  • 407 Accesses

Abstract

Web3D has gradually become the mainstream online 3D technology to support Metaverse. However, massive multiplayer online Web3D still faces challenges such as slow culling of potentially visible set at servers, networking congestion and sluggish online rendering at web browsers. To address the challenges, in this paper we propose a novel Web3D pipeline that coordinates PVS culling, networking transmitting, and Web3D rendering in a fine-grained way. The pipeline integrates three key steps: establishment of a granularity-aware voxelization scene graph, fine-grained PVS culling and transmitting scheduling, and incremental instanced rendering. Our experiments on a massive 3D plant have demonstrated that the proposed pipeline outperforms existing Web3D approaches in terms of transmitting and rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Airey, J.M.: Increasing update rates in the building walkthrough system with automatic model-space subdivision and potentially visible set calculations. The University of North Carolina at Chapel Hill (1990)

    Google Scholar 

  2. Chen, H.M., Chang, K.C., Lin, T.H.: A cloud-based system framework for performing online viewing, storage, and analysis on big data of massive BIMs. Autom. Constr. 71, 34–48 (2016)

    Article  Google Scholar 

  3. Chuang, T.H., Lee, B.C., Wu, I.C.: Applying cloud computing technology to BIM visualization and manipulation. In: 28th International Symposium on Automation and Robotics in Construction, vol. 201, pp. 144–149 (2011)

    Google Scholar 

  4. Cohen-Or, D., Chrysanthou, Y., Silva, C., Durand, F.: A survey of visibility for walkthrough applications. IEEE Trans. Visual Comput. Graphics 9(3), 412–431 (2003). https://doi.org/10.1109/TVCG.2003.1207447

    Article  Google Scholar 

  5. Corbalan-Navarro, D., Aragón, J.L., Anglada, M., De Lucas, E., Parcerisa, J.M., Gonzalez, A.: Omega-test: a predictive early-z culling to improve the graphics pipeline energy-efficiency. IEEE Trans. Visual Comput. Graphics 28(12), 4375–4388 (2021)

    Article  Google Scholar 

  6. Dong, Y., Peng, C.: Multi-GPU multi-display rendering of extremely large 3D environments. Vis. Comput. 1–17 (2022)

    Google Scholar 

  7. Englert, M., Jung, Y., Klomann, M., Etzold, J., Grimmy, P., Jia, J.: A streaming framework for instant 3D rendering and interaction. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, p. 192 (2015)

    Google Scholar 

  8. Hildebrandt, D., Hagedorn, B., Döllner, J.: Image-based strategies for interactive visualisation of complex 3D geovirtual environments on lightweight devices. J. Location Based Serv. 5(2), 100–120 (2011)

    Article  Google Scholar 

  9. Hladky, J., Seidel, H.P., Steinberger, M.: The camera offset space: real-time potentially visible set computations for streaming rendering. ACM Trans. Graph. (TOG) 38(6), 1–14 (2019)

    Article  Google Scholar 

  10. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108 (1996)

    Google Scholar 

  11. Jia, J., Wang, W., Hei, X.: An efficient caching algorithm for peer-to-peer 3D streaming in distributed virtual environments. J. Netw. Comput. Appl. 42, 1–11 (2014)

    Article  Google Scholar 

  12. Koch, T., Wimmer, M.: Guided visibility sampling++. Proc. ACM Comput. Graph. Interact. Tech. 4(1), 1–16 (2021)

    Article  Google Scholar 

  13. Li, F.W., Lau, R.W., Kilis, D.: Gameod: an internet based game-on-demand framework. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 129–136 (2004)

    Google Scholar 

  14. Li, K., Zhao, H., Zhang, Q., Jia, J.: CEBOW: a cloud-edge-browser online Web3D approach for visualizing large BIM scenes. Comput. Animat. Virtual Worlds 33(2), e2039 (2022)

    Article  Google Scholar 

  15. Liu, X., He, C., Zhao, H., Jia, J., Liu, C.: Building information modeling indoor path planning: a lightweight approach for complex BIM building. Comput. Animat. Virtual Worlds 32(3–4), e2014 (2021)

    Article  Google Scholar 

  16. Liu, X., He, C., Zhao, H., Jia, J., Liu, C.: Exteriortag: automatic semantic annotation of BIM building exterior via voxel index analysis. IEEE Comput. Graphics Appl. 41(3), 48–58 (2021)

    Article  Google Scholar 

  17. Liu, X., Xie, N., Tang, K., Jia, J.: Lightweighting for Web3D visualization of large-scale BIM scenes in real-time. Graph. Models 88, 40–56 (2016)

    Article  MathSciNet  Google Scholar 

  18. Lu, L., Yang, C., Wang, W., Zhang, J.: Voronoi-based potentially visible set and visibility query algorithms. In: 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering, pp. 234–240. IEEE (2011)

    Google Scholar 

  19. Mattausch, O., Bittner, J., Wimmer, M.: CHC++: coherent hierarchical culling revisited. In: Computer Graphics Forum, vol. 27, pp. 221–230. Wiley Online Library (2008)

    Google Scholar 

  20. Mwalongo, F., Krone, M., Reina, G., Ertl, T.: State-of-the-art report in web-based visualization. In: Computer Graphics Forum, vol. 35, pp. 553–575. Wiley Online Library (2016)

    Google Scholar 

  21. Robles-Ortega, M.D., Ortega, L., Feito, F.R.: Efficient visibility determination in urban scenes considering terrain information. ACM Trans. Spat. Algorithms Syst. (TSAS) 3(3), 1–24 (2017)

    Article  Google Scholar 

  22. Thalmann, N.M., Kim, J., Papagiannakis, G., Thalmann, D., Sheng, B.: Computer graphics for metaverse. Virtual Reality Intell. Hardware 4(5), ii–iv (2022). https://doi.org/10.1016/j.vrih.2022.10.001. https://www.sciencedirect.com/science/article/pii/S2096579622000997

  23. Trani, M.L., Cassano, M., Todaro, D., Bossi, B.: BIM level of detail for construction site design. Procedia Eng. 123, 581–589 (2015)

    Article  Google Scholar 

  24. Wang, M., Jia, J., Xie, N., Zhang, C.: Interest-driven avatar neighbor-organizing for P2P transmission in distributed virtual worlds. Comput. Animat. Virtual Worlds 27(6), 519–531 (2016)

    Article  Google Scholar 

  25. Wang, W., Gao, W.: Efficient multi-plane extraction from massive 3D points for modeling large-scale urban scenes. Vis. Comput. 35, 625–638 (2019)

    Article  Google Scholar 

  26. Wen, L., Jia, J., Liang, S.: LPM: lightweight progressive meshes towards smooth transmission of Web3D media over internet. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 95–103 (2014)

    Google Scholar 

  27. Wen, Laixiang, Xie, Ning, Jia, Jinyuan: Client-driven strategy of large-scale scene streaming. In: Tian, Qi., Sebe, Nicu, Qi, Guo-Jun., Huet, Benoit, Hong, Richang, Liu, Xueliang (eds.) MMM 2016. LNCS, vol. 9517, pp. 93–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27674-8_9

    Chapter  Google Scholar 

  28. Zhou, W., Tang, K., Jia, J.: S-LPM: segmentation augmented light-weighting and progressive meshing for the interactive visualization of large man-made web3d models. World Wide Web J. 21, 1425–1448 (2018)

    Google Scholar 

  29. Xue, J., Zhai, X., Qu, H.: Efficient rendering of large-scale cad models on a GPU virtualization architecture with model geometry metrics. In: 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), pp. 251–2515. IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

This research is supported by General Project of National Natural Science Foundation of China under Grant 6207071897 and the Key Project of the National Natural Science Regional Joint Fund under Grant U19A2063.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Tian or Jinyuan Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, A., Liu, Z., Zhang, Q., Tian, F., Jia, J. (2024). Fine-Grained Web3D Culling-Transmitting-Rendering Pipeline. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50072-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50071-8

  • Online ISBN: 978-3-031-50072-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics