Skip to main content

Light Accumulation Map for Natural Foliage Scene Generation

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Abstract

Foliage scene generation is an important problem in computer graphics. Realistic virtual floras require simulation of real plant symbiotic principles. Among the factors that affect the spatial distribution of plants, lighting is the most important one. The change of seasons, geographic locations, and shading from higher plants will greatly affect the sunlight conditions for different plants in floras, which cannot be easily described with parameters. In order to generate natural foliage scene that accurately reflects the sunlight condition while maintaining efficiency, we propose a novel method named Light Accumulation Map (LAM) which stores sunlight receiving and occlusion information of each tree model. By calculating sunlight accumulation during one year at different latitudes, we simulate the sunlight occlusion effect of the tree model and store the occlusion result as LAM. Then, a LAM-based foliage generation algorithm is brought out to simulate accurate foliage distribution with different latitudes and seasons. The evaluation shows that our method exhibits strong adaptability in creating a lifelike distribution of foliage, particularly in undergrowth areas, across various regions and throughout different seasons of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, F., Babahenini, M.C.: Forest fog rendering using generative adversarial networks. Vis. Comput. 39(3), 943–952 (2022). https://doi.org/10.1007/s00371-021-02376-z

    Article  Google Scholar 

  2. Barbier, S., Gosselin, F., Balandier, P.: Influence of tree species on understory vegetation diversity and mechanisms involved-a critical review for temperate and boreal forests. For. Ecol. Manag. 254(1), 1–15 (2008)

    Article  Google Scholar 

  3. Beneš, B.: An efficient estimation of light in simulation of plant development. In: Boulic, R., Hégron, G. (eds.) Computer Animation and Simulation 1996, pp. 153–165. Springer, Vienna (1996). https://doi.org/10.1007/978-3-7091-7486-9_11

    Chapter  Google Scholar 

  4. Chazdon, R.L., Pearcy, R.W., Lee, D.W., Fetcher, N.: Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey, S.S., Chazdon, R.L., Smith, A.P. (eds.) Tropical Forest Plant Ecophysiology, pp. 5–55. Springer, Boston (1996). https://doi.org/10.1007/978-1-4613-1163-8_1

    Chapter  Google Scholar 

  5. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., Prusinkiewicz, P.: Realistic modeling and rendering of plant ecosystems. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 275–286 (1998)

    Google Scholar 

  6. Ecormier-Nocca, P., Memari, P., Gain, J., Cani, M.P.: Accurate synthesis of multi-class disk distributions. In: Computer Graphics Forum, vol. 38, pp. 157–168. Wiley Online Library (2019)

    Google Scholar 

  7. Epic Games: Unreal engine. https://www.unrealengine.com

  8. Gain, J., Long, H., Cordonnier, G., Cani, M.P.: EcoBrush: interactive control of visually consistent large-scale ecosystems. In: Computer Graphics Forum, vol. 36, pp. 63–73. Wiley Online Library (2017)

    Google Scholar 

  9. Hädrich, T., Benes, B., Deussen, O., Pirk, S.: Interactive modeling and authoring of climbing plants. In: Computer Graphics Forum, vol. 36, pp. 49–61. Wiley Online Library (2017)

    Google Scholar 

  10. Haines, E., Akenine-Möller, T.: Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. Apress (2019)

    Google Scholar 

  11. Kapp, K., Gain, J., Guérin, E., Galin, E., Peytavie, A.: Data-driven authoring of large-scale ecosystems. ACM Trans. Graph. (TOG) 39(6), 1–14 (2020)

    Article  Google Scholar 

  12. Kuuluvainen, T., Pukkala, T.: Effect of crown shape and tree distribution on the spatial distribution of shade. Agric. For. Meteorol. 40(3), 215–231 (1987)

    Article  Google Scholar 

  13. Lane, B., Prusinkiewicz, P., et al.: Generating spatial distributions for multilevel models of plant communities. In: Graphics Interface, vol. 2002, pp. 69–87. Citeseer (2002)

    Google Scholar 

  14. Li, B., et al.: Learning to reconstruct botanical trees from single images. ACM Trans. Graph. (TOG) 40(6), 1–15 (2021)

    Google Scholar 

  15. Liu, X., Chen, Y., Zhang, H., Zou, Y., Wang, Z., Peng, Q.: Physically based modeling and rendering of avalanches. Vis. Comput. 37(9–11), 2619–2629 (2021). https://doi.org/10.1007/s00371-021-02215-1

    Article  Google Scholar 

  16. Makowski, M., Hädrich, T., Scheffczyk, J., Michels, D.L., Pirk, S., Pałubicki, W.: Synthetic silviculture: multi-scale modeling of plant ecosystems. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  17. Měch, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 397–410 (1996)

    Google Scholar 

  18. Mousavi Maleki, S.A., Hizam, H., Gomes, C.: Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: models re-visited. Energies 10(1), 134 (2017)

    Article  Google Scholar 

  19. Pirk, S., Niese, T., Hädrich, T., Benes, B., Deussen, O.: Windy trees: computing stress response for developmental tree models. ACM Trans. Graph. (TOG) 33(6), 1–11 (2014)

    Article  Google Scholar 

  20. Pirk, S., et al.: Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. (TOG) 31(4), 1–10 (2012)

    Article  Google Scholar 

  21. Preetham, A.J., Shirley, P., Smits, B.: A practical analytic model for daylight. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 91–100 (1999)

    Google Scholar 

  22. Soler, C., Sillion, F.X., Blaise, F., Dereffye, P.: An efficient instantiation algorithm for simulating radiant energy transfer in plant models. ACM Trans. Graph. (TOG) 22(2), 204–233 (2003)

    Article  Google Scholar 

  23. Spencer, J.W.: Fourier series representation of the position of the sun. Search 2(5), 172 (1971)

    Google Scholar 

  24. Stava, O., et al.: Inverse procedural modelling of trees. In: Computer Graphics Forum, vol. 33, pp. 118–131. Wiley Online Library (2014)

    Google Scholar 

  25. Strong, W.: Lateral Picea shadow effects on Populus tremuloides understory vegetation in central Yukon, Canada. For. Ecol. Manag. 261(11), 1866–1875 (2011)

    Article  Google Scholar 

  26. Zhang, J., Wang, C., Li, C., Qin, H.: Example-based rapid generation of vegetation on terrain via CNN-based distribution learning. Vis. Comput. 35(6), 1181–1191 (2019). https://doi.org/10.1007/s00371-019-01667-w

    Article  Google Scholar 

  27. Zhao, Y., Barbič, J.: Interactive authoring of simulation-ready plants. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangjiu Xiao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 35824 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, R., Ma, C.W., Dong, D., Xiao, S. (2024). Light Accumulation Map for Natural Foliage Scene Generation. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50072-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50071-8

  • Online ISBN: 978-3-031-50072-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics