Skip to main content

DrawGAN: Multi-view Generative Model Inspired by the Artist’s Drawing Method

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Abstract

We present a novel approach for modeling artists’ drawing processes using an architecture that combines an unconditional generative adversarial network (GAN) with a multi-view generator and multi-discriminator. Our method excels in synthesizing various types of picture drawing, including line drawing, shading, and color drawing, achieving high quality and robustness. Notably, our approach surpasses the existing state-of-the-art unconditional GANs. The key novelty of our approach lies in its architecture design, which closely resembles the typical sequence of an artist’s drawing process, leading to significantly enhanced image quality. Through experimental results on few-shot datasets, we demonstrate the potential of leveraging a multi-view generative model to enhance feature knowledge and modulate image generation processes. Our proposed method holds great promise for advancing AI in the visual arts field and opens up new avenues for research and creative practices.

Supported by National Natural Science Foundation of China NO. 62172366.

Supported by Key Laboratory of Electronic Business and Logistics Information Technology of Zhejiang Province KF202201.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862 (2017)

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  3. Cheema, M.N., et al.: Modified GAN-cAED to minimize risk of unintentional liver major vessels cutting by controlled segmentation using CTA/SPET-CT. IEEE Trans. Ind. Inform. 17(12), 7991–8002 (2021)

    Article  Google Scholar 

  4. Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  5. Choi, Y., Uh, Y., Yoo, J., Ha, J.-W.: StarGAN v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8188–8197 (2020)

    Google Scholar 

  6. Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: creative adversarial networks, generating “art” by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068 (2017)

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  10. Jeong, J., Shin, J.: Training GANs with stronger augmentations via contrastive discriminator. arXiv preprint arXiv:2103.09742 (2021)

  11. Karnewar, A., Wang, O.: MSG-GAN: multi-scale gradients for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7799–7808 (2020)

    Google Scholar 

  12. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: Advances in Neural Information Processing Systems, vol. 33, pp. 12104–12114 (2020)

    Google Scholar 

  13. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  14. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  15. Kwon, Y.-H., Park, M.-G.: Predicting future frames using retrospective cycle GAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1811–1820 (2019)

    Google Scholar 

  16. Li, C.: Two-stage sketch colorization. ACM Trans. Graph. 37(6), 1–14 (2018)

    Article  Google Scholar 

  17. Lim, J.H., Ye, J.C.: Geometric GAN. arXiv preprint arXiv:1705.02894 (2017)

  18. Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis. In: International Conference on Learning Representations (2020)

    Google Scholar 

  19. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  20. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  21. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  23. Royer, A., et al.: XGAN: unsupervised image-to-image translation for many-to-many mappings. In: Singh, R., Vatsa, M., Patel, V.M., Ratha, N. (eds.) Domain Adaptation for Visual Understanding, pp. 33–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30671-7_3

    Chapter  Google Scholar 

  24. Si, Z., Zhu, S.-C.: Learning hybrid image templates (HIT) by information projection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1354–1367 (2011)

    Article  Google Scholar 

  25. Tran, D., Ranganath, R., Blei, D.M.: Deep and hierarchical implicit models 7(3), 13 (2017). arXiv preprint arXiv:1702.08896

  26. Tseng, H.-Y., Jiang, L., Liu, C., Yang, M.-H., Yang, W.: Regularizing generative adversarial networks under limited data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7921–7931 (2021)

    Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wen, Y., et al.: Structure-aware motion deblurring using multi-adversarial optimized CycleGAN. IEEE Trans. Image Process. 30, 6142–6155 (2021)

    Article  Google Scholar 

  29. Yi, R., Liu, Y.-J., Lai, Y.-K., Rosin, P.L.: APDrawingGAN: generating artistic portrait drawings from face photos with hierarchical GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10743–10752 (2019)

    Google Scholar 

  30. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  31. Zhang, D., Khoreva, A.: PA-GAN: improving GAN training by progressive augmentation (2018)

    Google Scholar 

  32. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  33. Zhang, Y., Han, S., Zhang, Z., Wang, J., Bi, H.: CF-GAN: cross-domain feature fusion generative adversarial network for text-to-image synthesis. Vis. Comput. 39(4), 1283–1293 (2022). https://doi.org/10.1007/s00371-022-02404-6

    Article  Google Scholar 

  34. Zhao, S., Liu, Z., Lin, J., Zhu, J.-Y., Han, S.: Differentiable augmentation for data-efficient GAN training. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7559–7570 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, B., Chen, Z., Li, F.W.B., Sun, H., Cai, J. (2024). DrawGAN: Multi-view Generative Model Inspired by the Artist’s Drawing Method. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50072-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50071-8

  • Online ISBN: 978-3-031-50072-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics