Skip to main content

Exploring the Transferability of a Foundation Model for Fundus Images: Application to Hypertensive Retinopathy

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14497))

Included in the following conference series:

  • 580 Accesses

Abstract

Using deep learning models pre-trained on Imagenet is the traditional solution for medical image classification to deal with data scarcity. Nevertheless, relevant literature supports that this strategy may offer limited gains due to the high dissimilarity between domains. Currently, the paradigm of adapting domain-specialized foundation models is proving to be a promising alternative. However, how to perform such knowledge transfer, and the benefits and limitations it presents, are under study. The CGI-HRDC challenge for Hypertensive Retinopathy diagnosis on fundus images introduces an appealing opportunity to evaluate the transferability of a recently released vision-language foundation model of the retina, FLAIR [42]. In this work, we explore the potential of using FLAIR features as starting point for fundus image classification, and we compare its performance with regard to Imagenet initialization on two popular transfer learning methods: Linear Probing (LP) and Fine-Tuning (FP). Our empirical observations suggest that, in any case, the use of the traditional strategy provides performance gains. In contrast, direct transferability from FLAIR model allows gains of \(\sim \)2.5%. When fine-tuning the whole network, the performance gap increases up to \(\sim \)4%. In this case, we show that avoiding feature deterioration via LP initialization of the classifier allows the best re-use of the rich pre-trained features. Although direct transferability using LP still offers limited performance, we believe that foundation models such as FLAIR will drive the evolution of deep-learning-based fundus image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://github.com/jusiro/FLAIR.

  2. 2.

    https://www.kaggle.com/c/diabetic-retinopathy-detection.

  3. 3.

    https://odir2019.grand-challenge.org/.

  4. 4.

    https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT.

References

  1. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Factors of transferability for a generic convnet representation. In: CVPR Workshop: DeepVision, June 2014

    Google Scholar 

  2. Balyen, L., Peto, T.: Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac. J. Ophthalmol. 8, 264–272 (2019)

    Google Scholar 

  3. Bellemo, V., et al.: Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit. Health 1, e35–e44 (2019)

    Article  Google Scholar 

  4. Butoi, V.I., Ortiz, J.J.G., Ma, T., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Universeg: universal medical image segmentation. In: ArXiv Preprint, April 2023. http://arxiv.org/abs/2304.06131

  5. Castillo Benítez, V.E., et al.: Dataset from fundus images for the study of diabetic retinopathy. Data Brief 36, 107068 (2021)

    Article  Google Scholar 

  6. Cen, L.P., et al.: Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat. Commun. 12, 4828 (2021)

    Google Scholar 

  7. Chandrasekaran, R., Loganathan, B.: Retinopathy grading with deep learning and wavelet hyper-analytic activations. Vis. Comput. 2741–2756 (2023)

    Google Scholar 

  8. Cheng, D., Qin, Z., Jiang, Z., Zhang, S., Lao, Q., Li, K.: Sam on medical images: a comprehensive study on three prompt modes. In: ArXiv Preprint (2023)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2009)

    Google Scholar 

  10. Deng, R., et al.: Segment anything model (SAM) for digital pathology: assess zero-shot segmentation on whole slide imaging. In: ArXiv Preprint (2023)

    Google Scholar 

  11. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of training deep architectures and the effect of unsupervised pre-training. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (PMLR), pp. 153–160 (2009)

    Google Scholar 

  12. Giancardo, L., et al.: Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 16, 216–226 (2012)

    Google Scholar 

  13. Hassan, T., Akram, M.U., Masood, M.F., Yasin, U.: Deep structure tensor graph search framework for automated extraction and characterization of retinal layers and fluid pathology in retinal SD-OCT scans. Comput. Biol. Med. 105, 112–124 (2019)

    Google Scholar 

  14. Hassan, T., Akram, M.U., Werghi, N., Nazir, M.N.: RAG-FW: a hybrid convolutional framework for the automated extraction of retinal lesions and lesion-influenced grading of human retinal pathology. IEEE J. Biomed. Health Inform. 25(1), 108–120 (2021)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–12, December 2016

    Google Scholar 

  16. Hoover, A.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19, 203–210 (2000)

    Article  Google Scholar 

  17. Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22, 951–958 (2003)

    Google Scholar 

  18. Huang, J.H., et al.: Deepopht: medical report generation for retinal images via deep models and visual explanation. In: Proceedings of the Winter Conference on Applications of Computer Vision (WACV), pp. 2442–2452 (2021)

    Google Scholar 

  19. Imran, A., Li, J., Pei, Y., Akhtar, F., Mahmood, T., Zhang, L.: Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network. Vis. Comput. (2020)

    Google Scholar 

  20. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916 (2021)

    Google Scholar 

  21. Jin, K., et al.: FIVES: a fundus image dataset for artificial intelligence based vessel segmentation. Sci. Data 9, 475 (2022)

    Google Scholar 

  22. Kanavati, F., Tsuneki, M.: Partial transfusion: on the expressive influence of trainable batch norm parameters for transfer learning. In: MIDL (2021)

    Google Scholar 

  23. Kirillov, A., et al.: Segment anything. In: ArXiv Preprint (2023)

    Google Scholar 

  24. Kovalyk, O., et al.: PAPILA: dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. Sci. Data 9, 291 (2022)

    Google Scholar 

  25. Kumar, A., Raghunathan, A., Jones, R.M., Ma, T., Liang, P.: Fine-tuning can distort pretrained features and underperform out-of-distribution. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  26. Kumar, J.R., et al.: Chaksu: a glaucoma specific fundus image database. Sci. Data 10 (2023)

    Google Scholar 

  27. Li, L., Xu, M., Wang, X., Jiang, L., Liu, H.: Attention based glaucoma detection: a large-scale database and CNN model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–10 (2019)

    Google Scholar 

  28. Li, T., Gao, Y., Wang, K., Guo, S., Liu, H., Kang, H.: Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf. Sci. 501, 511–522 (2019)

    Article  Google Scholar 

  29. Lin, L., et al.: The SUSTech-SYSU dataset for automated exudate detection and diabetic retinopathy grading. Sci. Data 7 (2020)

    Google Scholar 

  30. Liu, J., et al.: Clip-driven universal model for organ segmentation and tumor detection. In: ArXiv Preprint, January 2023. http://arxiv.org/abs/2301.00785

  31. Liu, R., et al.: TMM-Nets: transferred multi- to mono-modal generation for lupus retinopathy diagnosis. IEEE Trans. Med. Imaging 42, 1083–1094 (2023)

    Article  Google Scholar 

  32. Liu, R., et al.: Deepdrid: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3 (2022)

    Google Scholar 

  33. Lu, M.Y., et al.: Visual language pretrained multiple instance zero-shot transfer for histopathology images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), October 2023

    Google Scholar 

  34. Nakayama, L.F., et al.: A Brazilian multilabel ophthalmological dataset (BRSET). In: PhysioNet (2023)

    Google Scholar 

  35. Neyshabur, B., Sedghi, H., Zhang, C.: What is being transferred in transfer learning? In: Advances in Neural Information Processing Systems (NeurIPS), August 2020

    Google Scholar 

  36. Pachade, S., et al.: Retinal fundus multi-disease image dataset (RFMiD): a dataset for multi-disease detection research. Data 6, 1–14 (2021)

    Google Scholar 

  37. Pires, R., Jelinek, H.F., Wainer, J., Valle, E., Rocha, A.: Advancing bag-of-visual-words representations for lesion classification in retinal images. PLoS ONE 9 (2014)

    Google Scholar 

  38. Porwal, P., et al.: IDRiD: diabetic retinopathy – segmentation and grading challenge. Med. Image Anal. 59, 101561 (2020)

    Google Scholar 

  39. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ArXiv Preprint (2021)

    Google Scholar 

  40. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  41. Salam, A.A., Mahadevappa, M., Das, A., Nair, M.S.: RDD-Net: retinal disease diagnosis network: a computer-aided diagnosis technique using graph learning and feature descriptors. Vis. Comput. (2022)

    Google Scholar 

  42. Silva-Rodriguez, J., Chakor, H., Riadh, K., Dolz, J., Ayed, I.B.: A foundation language-image model of the retina (FLAIR): encoding expert knowledge in text supervision. ArXiv Preprint (2023)

    Google Scholar 

  43. Silva-Rodriguez, J., Dolz, J., Ayed, I.B.: Transductive few-shot adapters for medical image segmentation. arXiv Preprint (2023)

    Google Scholar 

  44. Srinivasan, V., Strodthoff, N., Ma, J., Binder, A., Müller, K.R., Samek, W.: To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy. PLoS ONE 17 (2022)

    Google Scholar 

  45. Takahashi, H., Tampo, H., Arai, Y., Inoue, Y., Kawashima, H.: Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy. PLoS ONE 12 (2017)

    Google Scholar 

  46. de Vente, C., et al.: AIROGS: artificial intelligence for robust glaucoma screening challenge. ArXiv preprint (2023)

    Google Scholar 

  47. Wang, Z., Wu, Z., Agarwal, D., Sun, J.: Medclip: contrastive learning from unpaired medical images and text. In: Empirical Methods in Natural Language Processing (EMNLP), October 2022

    Google Scholar 

Download references

Acknowledgments

The work of J. Silva-Rodríguez was partially funded by the Fonds de recherche du Québec (FRQ) under the Postdoctoral Merit Scholarship for Foreign Students (PBEEE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Silva-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva-Rodriguez, J. et al. (2024). Exploring the Transferability of a Foundation Model for Fundus Images: Application to Hypertensive Retinopathy. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14497. Springer, Cham. https://doi.org/10.1007/978-3-031-50075-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50075-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50074-9

  • Online ISBN: 978-3-031-50075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics