Skip to main content

Group Perception Based Self-adaptive Fusion Tracking

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14498))

Included in the following conference series:

  • 215 Accesses

Abstract

Multi-object tracking (MOT) is an important and representative task in the field of computer vision, while tracking-by-detection is the most mainstream paradigm for MOT, so that target detection quality, feature representation ability, and association algorithm greatly affect tracking performance. On the one hand, multiple pedestrians moving together in the same group maintain similar motion pattern, so that they can indicate each other’s moving state. We extract groups from detections and maintain the group relationship of trajectories in tracking. We propose a state transition mechanism to smooth detection bias, recover missing detection and confront false detection. We also build a two-level group-detection association algorithm, which improves the accuracy of association. On the other hand, different areas of the tracking scene have diverse and varying impact on the detections’ appearance feature, which weakens the appearance feature’s representation ability. We propose a self-adaptive feature fusion strategy based on the tracking scene and the group structure, which can help us to get fusion feature with stronger representative ability to use in the trajectory-detection association to improve tracking performance. To summary, in this paper, we propose a novel Group Perception based Self-adaptive Fusion Tracking (GST) framework, including Group concept and Group Exploration Net, Group Perception based State Transition Mechanism, and Self-adaptive Feature Fusion Strategy. Experiments on the MOT17 dataset demonstrate the effectiveness of our method. The method achieves competitive results compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiong, Z., Sheng, H., Rong, W., Cooper, D.E.: Intelligent transportation systems for smart cities: a progress review. Sci. Chin. Inf. Sci. 55, 2908–2914 (2012)

    Article  Google Scholar 

  2. Forsyth, D.: Object detection with discriminatively trained part-based models. Computer 47(02), 6–7 (2014)

    Article  Google Scholar 

  3. Yang, F., Choi, W., Lin, Y.: Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2016)

    Google Scholar 

  4. Wang, S., Sheng, H., Zhang, Y., Wu, Y., Xiong, Z.: A general recurrent tracking framework without real data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13219–13228 (2021)

    Google Scholar 

  5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  6. Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple object tracking: a literature review. Artif. Intell. 293, 103448 (2021)

    Google Scholar 

  7. Zhang, Y., et al.: Long-term tracking with deep tracklet association. IEEE Trans. Image Process. 29, 6694–6706 (2020)

    Article  Google Scholar 

  8. Meyer, F., Win, M.Z.: Scalable data association for extended object tracking. In: IEEE Transactions on Signal and Information Processing Over Networks, vol. 6. pp. 491–507. IEEE (2020)

    Google Scholar 

  9. Xie, Z., Zhang, W., Sheng, B., Li, P., Chen, C.P.: BaGFN: broad attentive graph fusion network for high-order feature interactions. IEEE Transactions on Neural Networks and Learning Systems (2021)

    Google Scholar 

  10. Liu, R., et al.: NHBS-Net: a feature fusion attention network for ultrasound neonatal hip bone segmentation. IEEE Trans. Med. Imaging 40(12), 3446–3458 (2021)

    Article  Google Scholar 

  11. Wang, X., Wang, J., Kang, M., Feng, Z., Zhou, X., Liu, B.: LDGC-Net: learnable descriptor graph convolutional network for image retrieval. Vis. Comput. 1–15 (2022)

    Google Scholar 

  12. Yang, Y., Qi, Y., Qi, S.: Relation-consistency graph convolutional network for image super-resolution. Vis. Comput. 1–17 (2023)

    Google Scholar 

  13. Minoura, H., Hirakawa, T., Sugano, Y., Yamashita, T., Fujiyoshi, H.: Utilizing human social norms for multimodal trajectory forecasting via group-based forecasting module. IEEE Trans. Intell. Veh. 8, 836–850 (2022)

    Google Scholar 

  14. Wang, S., Sheng, H., Zhang, Y., Yang, D., Shen, J., Chen, R.: Blockchain-empowered distributed multi-camera multi-target tracking in edge computing. IEEE Transactions on Industrial Informatics (2023)

    Google Scholar 

  15. Sun, Z., Chen, J., Chao, L., Ruan, W., Mukherjee, M.: A survey of multiple pedestrian tracking based on tracking-by-detection framework. In: IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, pp. 1819–1833. IEEE (2020)

    Google Scholar 

  16. Zhang, P., Zhao, J., Bo, C., Wang, D., Lu, H., Yang, X.: Jointly modeling motion and appearance cues for robust RGB-T tracking. In: IEEE Transactions on Image Processing, vol. 30, pp. 3335–3347. IEEE (2021)

    Google Scholar 

  17. Sheng, H., Chen, J., Zhang, Y., Ke, W., Xiong, Z., Yu, J.: Iterative multiple hypothesis tracking with Tracklet-level association. IEEE Trans. Circ. Syst. Video Technol. 29(12), 3660–3672 (2018)

    Article  Google Scholar 

  18. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

  19. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP J. Image Video Process. 2008, 1–10 (2008)

    Article  Google Scholar 

  20. Sheng, H., et al.: Hypothesis testing based tracking with spatio-temporal joint interaction modeling. IEEE Trans. Circ. Syst. Video Technol. 30(9), 2971–2983 (2020)

    Article  Google Scholar 

  21. Wu, Y., Sheng, H., Wang, S., Liu, Y., Xiong, Z., Ke, W.: Group guided data association for multiple object tracking. In: Proceedings of the Asian Conference on Computer Vision, pp. 520–535 (2022)

    Google Scholar 

  22. Wang, L., Yu, Z., Yang, D., Ma, H., Sheng, H.: Efficiently targeted billboard advertising using crowdsensing vehicle trajectory data. IEEE Trans. Industr. Inf. 16(2), 1058–1066 (2019)

    Article  Google Scholar 

  23. Luiten, J., et al.: HOTA: a higher order metric for evaluating multi-object tracking. Int. J. Comput. Vision 129, 548–578 (2021)

    Article  Google Scholar 

  24. Du, Y., et al.: StrongSORT: make DeepSORT great again. IEEE Trans. Multimedia (2023)

    Google Scholar 

  25. Veeramani, B., Raymond, J.W., Chanda, P.: DeepSORT: deep convolutional networks for sorting haploid maize seeds. BMC Bioinform. 19, 1–9 (2018)

    Article  Google Scholar 

  26. Galor, A., Orfaig, R., Bobrovsky, B.Z.: Strong-TransCenter: improved multi-object tracking based on transformers with dense representations. arXiv preprint arXiv:2210.13570 (2022)

  27. Quach, K.G., et al.: DyGLIP: a dynamic graph model with link prediction for accurate multi-camera multiple object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13784–13793 (2021)

    Google Scholar 

  28. Cao, J., Pang, J., Weng, X., Khirodkar, R., Kitani, K.: Observation-centric SORT: rethinking SORT for robust multi-object tracking. arXiv preprint arXiv:2203.14360, 2022

  29. Aharon, N., Orfaig, R., Bobrovsky, B.-Z.: BoT-SORT: robust associations multi-pedestrian tracking. arXiv preprint arXiv:2206.14651 (2022)

Download references

Acknowledgements

This study is partially supported by the National Key R &D Program of China (No.2022YFB3306500), the National Natural Science Foundation of China (No.61872025). Thanks for the support from HAWKEYE Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyang Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, Y. et al. (2024). Group Perception Based Self-adaptive Fusion Tracking. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14498. Springer, Cham. https://doi.org/10.1007/978-3-031-50078-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50078-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50077-0

  • Online ISBN: 978-3-031-50078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics