Skip to main content

Achieving Complete Coverage with Hypercube-Based Symbolic Knowledge-Extraction Techniques

  • Conference paper
  • First Online:
Artificial Intelligence. ECAI 2023 International Workshops (ECAI 2023)

Abstract

Symbolic knowledge-extraction (SKE) techniques are currently employed for various purposes, particularly addressing the challenge of explaining opaque models by generating human-understandable explanations. The existing literature encompasses a diverse range of techniques, each relying on specific theoretical assumptions and possessing its own advantages and disadvantages. Amongst the available choices, hypercube-based SKE techniques are notable for their adaptability and versatility. However, they may suffer from limited completeness when utilised for making predictions. This research aims to augment the predictive capabilities of hypercube-based SKE techniques, striving for a completeness rate of 100%. Furthermore, the study includes experiments that assess the effectiveness of the proposed enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the term “hypercube” also for referring to actual hyperrectangles, as commonly made in the literature [9, for instance].

  2. 2.

    https://github.com/psykei/psyke-python.

  3. 3.

    https://archive.ics.uci.edu/dataset/53/iris.

References

  1. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl. Based Syst. 8(6), 373–389 (1995). https://doi.org/10.1016/0950-7051(96)81920-4

  2. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    Google Scholar 

  3. Calegari, R., Sabbatini, F.: The PSyKE technology for trustworthy artificial intelligence. In: Dovier, A., Montanari, A., Orlandini, A. (eds.) XXI International Conference of the Italian Association for Artificial Intelligence, AIxIA 2022, Udine, Italy, November 28 – December 2, 2022, Proceedings, vol. 13796, pp. 3–16 (2023). https://doi.org/10.1007/978-3-031-27181-6_1

  4. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp. 24–30. The MIT Press (1996). https://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf

  5. Eineborg, M., Boström, H.: Classifying uncovered examples by rule stretching. In: Rouveirol, C., Sebag, M. (eds.) Inductive Logic Programming, 11th International Conference, ILP 2001, Strasbourg, France, September 9–11 2001, Proceedings. LNCS, vol. 2157, pp. 41–50. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44797-0_4

  6. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x, https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

  7. Garcez, A.S.d., Broda, K., Gabbay, D.M.: Symbolic knowledge extraction from trained neural networks: a sound approach. Artif. Intell. 125(1–2), 155–207 (2001)

    Google Scholar 

  8. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018). https://doi.org/10.1145/3236009

    Article  Google Scholar 

  9. Huysmans, J., Baesens, B., Vanthienen, J.: ITER: an algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11823728_26

    Chapter  Google Scholar 

  10. Kenny, E.M., Ford, C., Quinn, M., Keane, M.T.: Explaining black-box classifiers using post-hoc explanations-by-example: the effect of explanations and error-rates in XAI user studies. Artif. Intell. 294, 103459 (2021). https://doi.org/10.1016/j.artint.2021.103459

    Article  MathSciNet  Google Scholar 

  11. Konig, R., Johansson, U., Niklasson, L.: G-REX: a versatile framework for evolutionary data mining. In: 2008 IEEE International Conference on Data Mining Workshops (ICDM 2008 Workshops), pp. 971–974 (2008). https://doi.org/10.1109/ICDMW.2008.117

  12. Rocha, A., Papa, J.P., Meira, L.A.A.: How far do we get using machine learning black-boxes? Int. J. Pattern Recogn. Artif. Intell. 26(02), 1261001-(1–23) (2012). https://doi.org/10.1142/S0218001412610010

  13. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x

    Article  Google Scholar 

  14. Sabbatini, F., Calegari, R.: Symbolic knowledge extraction from opaque machine learning predictors: GridREx & PEDRO. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, July 31–August 5, 2022 (2022). https://doi.org/10.24963/kr.2022/57. https://proceedings.kr.org/2022/57/

  15. Sabbatini, F., Calegari, R.: Bottom-up and top-down workflows for hypercube- and clustering-based knowledge extractors. In: Proceedings of the V International Workshop on Explainable and Transparent AI and Multi-Agent Systems, EXTRAAMAS 2023, London, UK, 29 May 2023, vol. 14127. Springer, Cham. (2023, to appear). https://doi.org/10.1007/978-3-031-40878-6_7

  16. Sabbatini, F., Calegari, R.: Explainable clustering via ExACT. In: Proceedings of the II International Workshop on Knowledge Diversity, KoDis 2023, Rhodes, Greece, 2–8 September 2023 (2023). https://ceur-ws.org/Vol-3548/paper3.pdf

  17. Sabbatini, F., Calegari, R.: Explainable clustering with CREAM. In: Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning, pp. 593–603 (2023). https://doi.org/10.24963/kr.2023/58

  18. Sabbatini, F., Calegari, R.: The ICE score to evaluate symbolic knowledge quality. In: Proceedings of the XXXVIII Annual AAAI Conference on Artificial Intelligence, AAAI24, Vancouver, Canada, 20–27 February 2024 (2023, submitted to)

    Google Scholar 

  19. Sabbatini, F., Calegari, R.: On the evaluation of the symbolic knowledge extracted from black boxes. In: AAAI 2023 Spring Symposium Series, San Francisco, California (2023, to appear)

    Google Scholar 

  20. Sabbatini, F., Calegari, R.: Unveiling opaque predictors via explainable clustering: the CReEPy algorithm. In: Proceedings of the 2nd Workshop on Bias, Ethical Al, Explainability and the role of Logic and Logic Programming, BEWARE-23, Rome, Italy, November 6, 2023, (2023, to appear)

    Google Scholar 

  21. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: On the design of PSyKE: a platform for symbolic knowledge extraction. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2021–22nd Workshop “From Objects to Agents”. CEUR Workshop Proceedings, vol. 2963, pp. 29–48. Sun SITE Central Europe, RWTH Aachen University (2021). https://ceur-ws.org/Vol-2963/paper14.pdf, 22nd Workshop “From Objects to Agents” (WOA 2021), Bologna, Italy, 1–3 September 2021. Proceedings (2021)

  22. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Hypercube-based methods for symbolic knowledge extraction: towards a unified model. In: Ferrando, A., Mascardi, V. (eds.) WOA 2022–23rd Workshop “From Objects to Agents”, CEUR Workshop Proceedings, Sun SITE Central Europe, RWTH Aachen University, vol. 3261, pp. 48–60 (2022). https://ceur-ws.org/Vol-3261/paper4.pdf

  23. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Symbolic knowledge extraction from opaque ML predictors in PSyKE: platform design experiments. Intelligenza Artificiale 16(1), 27–48 (2022). https://doi.org/10.3233/IA-210120

  24. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Towards a unified model for symbolic knowledge extraction with hypercube-based methods. Intelligenza Artificiale 17(1), 63–75 (2023). https://doi.org/10.3233/IA-230001

  25. Sabbatini, F., Ciatto, G., Omicini, A.: GridEx: an algorithm for knowledge extraction from black-box regressors. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems. Third International Workshop, EXTRAAMAS 2021, Virtual Event, 3–7 May 2021, Revised Selected Papers, LNCS, vol. 12688, pp. 18–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82017-6_2

  26. Sabbatini, F., Ciatto, G., Omicini, A.: Semantic Web-based interoperability for intelligent agents with PSyKE. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems, LNCS, vol. 13283, pp. 124–142. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15565-9_8

  27. Salzberg, S.: A nearest hyperrectangle learning method. Mach. Learn. 6, 251–276 (1991). https://doi.org/10.1023/A:1022661727670

  28. Tüfekci, P.: Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electr. Power Energy Syst. 60, 126–140 (2014). https://www.sciencedirect.com/science/article/pii/S0142061514000908, https://doi.org/10.1016/j.ijepes.2014.02.027

Download references

Acknowledgments

This work has been supported by European Union’s Horizon Europe AEQUITAS research and innovation programme under grant number 101070363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Sabbatini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabbatini, F., Calegari, R. (2024). Achieving Complete Coverage with Hypercube-Based Symbolic Knowledge-Extraction Techniques. In: Nowaczyk, S., et al. Artificial Intelligence. ECAI 2023 International Workshops. ECAI 2023. Communications in Computer and Information Science, vol 1947. Springer, Cham. https://doi.org/10.1007/978-3-031-50396-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50396-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50395-5

  • Online ISBN: 978-3-031-50396-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics