Skip to main content

Identifying Critical Scenarios in Autonomous Driving During Operation

  • Conference paper
  • First Online:
Artificial Intelligence. ECAI 2023 International Workshops (ECAI 2023)

Abstract

Ensuring autonomous driving systems’ safety, reliability, and trustworthiness is paramount to preventing incorrect or unexpected system behaviors and hazardous scenarios. However, due to the complexity of such systems and the immense search space of possible scenarios, testing could be infeasible, necessitating the need to detect critical situations during operation. This paper proposes a hybrid approach that combines qualitative reasoning and object detection to prevent and discover critical driving scenarios. The proposed approach relies on identifying spatiotemporal patterns of detected objects in the driving environment that are indicative of critical scenarios, such as specific changes in movement or physical impossibilities. We evaluate the approach’s effectiveness on real-world driving data and demonstrate its ability to identify critical driving situations successfully. Moreover, we discuss the challenges associated with the approach and outline future research activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.a2d2.audi/a2d2/en.html.

  2. 2.

    https://potassco.org/.

References

  1. Bennett, B.: Modal logics for qualitative spatial reasoning. Logic J. IGPL 4(1), 23–45 (1996). https://doi.org/10.1093/jigpal/4.1.23

    Article  MathSciNet  Google Scholar 

  2. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468 (2016). https://doi.org/10.1109/ICIP.2016.7533003

  3. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020). https://doi.org/10.48550/ARXIV.2004.10934, https://arxiv.org/abs/2004.10934

  4. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an overview. Fund. Inform. 46(1–2), 1–29 (2001)

    MathSciNet  Google Scholar 

  5. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: Tessaris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2_2

    Chapter  Google Scholar 

  6. Forbus, K.D.: Qualitative process theory. Artif. Intell. 24(1), 85–168 (1984). https://doi.org/10.1016/0004-3702(84)90038-9, https://www.sciencedirect.com/science/article/pii/0004370284900389

  7. Friedrich, G., Gottlob, G., Nejdl, W.: Physical impossibility instead of fault models. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 331–336. Boston (1990), also appears in Readings in Model-Based Diagnosis (Morgan Kaufmann, 1992)

    Google Scholar 

  8. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054

    Article  MathSciNet  Google Scholar 

  9. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013). https://doi.org/10.1177/0278364913491297

    Article  Google Scholar 

  10. Geyer, J., et al.: A2D2: audi autonomous driving dataset (2020). https://www.a2d2.audi

  11. Gilpin, L.H.: Anomaly detection through explanations. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2020)

    Google Scholar 

  12. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. A: Policy Pract. 94, 182–193 (2016). https://doi.org/10.1016/j.tra.2016.09.010, www.sciencedirect.com/science/article/pii/S0965856416302129

  13. Klampfl, L., Klück, F., Wotawa, F.: Using genetic algorithms for automating automated lane-keeping system testing. J. Softw. Evol. Process e2520 (2022). https://doi.org/10.1002/smr.2520, https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2520

  14. Klampfl, L., Wotawa, F.: On the use of qualitative reasoning in autonomous driving. In: 35th International Workshop on Qualitative Reasoning; 23 July 2022 (2022). https://www.esade.edu/faculty-research/en/institute-for-data-driven-decisions/research/juice-research-group/35th-international-workshop-on-qualitative-reasoning,

  15. Klück, F., Zimmermann, M., Wotawa, F., Nica, M.: Genetic algorithm-based test parameter optimization for ADAS system testing. In: Proceedings of the 19th IEEE International Conference on Software Quality, Reliability and Security (QRS), pp. 418–425 (2019). https://doi.org/10.1109/QRS.2019.00058

  16. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int. J. Trans. Safety 4, 15–24 (2016). https://doi.org/10.4271/2016-01-0128

    Article  Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  19. Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 161–215. Springer, Netherlands, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_4

  20. Schuldt, F., Reschka, A., Maurer, M.: A method for an efficient, systematic test case generation for advanced driver assistance systems in virtual environments. In: Winner, H., Prokop, G., Maurer, M. (eds.) Automotive Systems Engineering II, pp. 147–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61607-0_7

    Chapter  Google Scholar 

  21. Suchan, J., Bhatt, M., Varadarajan, S.: Out of sight but not out of mind: an answer set programming based online abduction framework for visual sensemaking in autonomous driving. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019. 10–16 August 2019, Macao, China, pp. 1879–1885. International Joint Conferences on Artificial Intelligence Organization (2019). https://doi.org/10.24963/ijcai.2019/260

  22. Suchan, J., Bhatt, M., Varadarajan, S.: Commonsense visual sensemaking for autonomous driving - on generalised neurosymbolic online abduction integrating vision and semantics. Artif. Intell. 299, 103522 (2021). https://doi.org/10.1016/j.artint.2021.103522, www.sciencedirect.com/science/article/pii/S0004370221000734

  23. Suchan, J., Bhatt, M., Wałega, P., Schultz, C.: Visual explanation by high-level abduction: on answer-set programming driven reasoning about moving objects. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018). https://doi.org/10.1609/aaai.v32i1.11569, https://ojs.aaai.org/index.php/AAAI/article/view/11569

  24. Wotawa, F.: Testing autonomous and highly configurable systems: challenges and feasible solutions. In: Watzenig, D., Horn, M. (eds.) Automated Driving, pp. 519–532. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-31895-0_22

    Chapter  Google Scholar 

  25. Wotawa, F., Klampfl, L.: Explaining object motion using answer set programming. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds.) ISMIS 2020. LNCS (LNAI), vol. 12117, pp. 298–307. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59491-6_28

    Chapter  Google Scholar 

  26. Wotawa, F., Peischl, B., Klück, F., Nica, M.: Quality assurance methodologies for automated driving. Elektrotech. Informationstechnik 135(4–5), 322–327 (2018). https://doi.org/10.1007/s00502-018-0630-7

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology, and Development, and the Christian Doppler Research Association is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Klampfl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klampfl, L., Wotawa, F. (2024). Identifying Critical Scenarios in Autonomous Driving During Operation. In: Nowaczyk, S., et al. Artificial Intelligence. ECAI 2023 International Workshops. ECAI 2023. Communications in Computer and Information Science, vol 1947. Springer, Cham. https://doi.org/10.1007/978-3-031-50396-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50396-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50395-5

  • Online ISBN: 978-3-031-50396-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics