Abstract
Association rule mining identifies potentially unknown correlations between columns in a relational database and is therefore a central task in the data mining process. In many cases though, the resulting set of association rules is by far too big and confusing for a domain expert to extract useful knowledge. Moreover, the domain expert might often expect that particular association rules are generated by the data mining process and would like to be able to search, e. g., for similar rules according to their expectation.
In this paper, we propose to store association rules in a rule base which will offer functionality for the management of the rules. The rule base can also offer subsumption features for condensing huge sets of derived association rules to smaller subsets of interesting rules that can be investigated by the domain expert. The rule base can store association rules derived in different attempts of rule mining. And depending on the result of a rule mining attempt, further attempts can be initiated. The post–processing of the rule mining result, for example, can derive further association rules by grouping the values of attributes in their consequences; it can also initiate another round of pre-processing of the base relation to group certain values of certain attributes to sets (tiles), and thus to derive correlations between sets of attribute values in further steps of association rule mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD, vol. 22, pp. 207–216. ACM (1993)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th VLDB Conference, Santiago de Chile, pp. 487–499 (1994)
Atzmueller, M.: Subgroup Discovery. WIREs Data Min. Knowl. Disc. 5(1), 35–49 (2015)
Atzmueller, M.: Onto explicative data mining: exploratory, interpretable and explainable analysis. Abstract. Dutch-Belgian Database Day, TU Eindhoven (2017)
Atzmueller, M.: Declarative aspects in explicative data mining for computational sensemaking. In: Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP -2017. LNCS (LNAI), vol. 10997, pp. 97–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00801-7_7
Atzmueller, M., Hayat, N., Trojahn, M., Kroll, D.: Explicative human activity recognition using adaptive association rule-based classification. In: Proceedings of IEEE International Conference on Future IoT Technologies, IEEE, Boston, MA, USA (2018)
Atzmueller, M., Lemmerich, F., Krause, B., Hotho, A.: Who are the spammers? Understandable local patterns for concept description. In: Proceedings of 7th Conference on Computer Methods and Systems. Oprogramowanie Nauko-Techniczne, Krakow, Poland (2009)
Bao, F., Mao, L., Zhu, Y., Xiao, C., Xu, C.: An improved evaluation methodology for mining association rules. Axioms 11(1), 17 (2021)
Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82 – 115 (2020)
Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense databases. Data Min. Knowl. Disc. 4(2–3), 217–240 (2000)
Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI-17 Workshop on Explainable AI (2017)
Brin, S., Motwani, R., Silverstein, C.: beyond market baskets: generalizing association rules to correlations. In: Proceedings of ACM SIGMOD, pp. 265–276 (1997)
Bruzzese, D., Buono, P.: Combining visual techniques for association rules exploration. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 381–384 (2004)
Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-symbolic techniques for XAI: a survey. Intelligenza Artificiale 14(1), 7–32 (2020)
Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min. Knowl. Disc. 30(1), 47–98 (2016)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37–54 (1996)
Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: an overview. AI Mag. 13(3), 57–57 (1992)
Freitas, A.A.: On rule interestingness measures. Knowl.-Based Syst. 12(5–6), 309–325 (1999)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 9-es (2006)
Gottlob, G.: Subsumption and implication. Inf. Process. Lett. 24(2), 109–111 (1987)
Hahsler, M.: A probabilistic comparison of commonly used interest measures for association rules (2015). https://mhahsler.github.io/arules/docs/measures
Hahsler, M., Buchta, C., Hornik, K.: Selective association rule generation. Comput. Stat. 23(2), 303–315 (2008)
Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation. Springer, Berlin (1978). https://doi.org/10.1007/978-3-642-66943-9
Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns Without Candidate Generation. In: Proceedings of ACM SIGMOD, pp. 1–12. ACM Press (2000)
Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining - a general survey and comparison. SIGKDD Explor. 2(1), 58–64 (2000)
Ilkou, E., Koutraki, M.: Symbolic vs sub-symbolic AI methods: Friends or enemies? In: CIKM (Workshops), vol. 2699 (2020)
Imieliński, T., Virmani, A.: Association rules... and what’s next? — towards second generation data mining systems. In: Litwin, W., Morzy, T., Vossen, G. (eds.) ADBIS 1998. LNCS, vol. 1475, pp. 6–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0057713
Mahdi, M.A., Hosny, K.M., Elhenawy, I.: Fr-tree: a novel rare association rule for big data problem. Expert Syst. Appl. 187, 115898 (2022)
Marinica, C., Guillet, F.: Knowledge-based interactive postmining of association rules using ontologies. IEEE Trans. Knowl. Data Eng. 22(6), 784–797 (2010)
McMillan, C., Mozer, M.C., Smolensky, P.: Rule induction through integrated symbolic and subsymbolic processing. In: Advances in Neural Information Processing Systems, vol. 4 (1991)
Olson, D.L., Araz, Ö.M.: Association rules. In: Data Mining and Analytics in Healthcare Management: Applications and Tools, pp. 35–52. Springer, Cham (2023)
Piatetsky-Shapiro, G., Matheus, C.J.: The Interestingness of deviations. In: Proceedings of AAAI-94 Workshop on Knowledge Discovery in Databases (KDD-94), pp. 25–36. ACM Press, New York (1994)
Rauch, J.: Observational Calculi and Association Rules. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-11737-4
Seipel, D.: Declare – a declarative toolkit for knowledge–based systems and logic programming (2005)
Seipel, D.: Advanced Databases, Lecture Notes of a Course at the University of Würzburg (since 2015)
Seipel, D., Atzmueller, M.: Declarative knowledge discovery in databases via meta–learning–towards advanced analytics. In: Proceedings of the International Workshop on Semantic Data Mining (SEDAMI 2021), co-located with the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021). CEUR Workshop Proceedings, vol. 3032, pp. 1–5. CEUR-WS.org (2021)
Vollert, S., Atzmueller, M., Theissler, A.: Interpretable machine learning: a brief survey from the predictive maintenance perspective. In: Proceedings of IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2021), IEEE (2021)
Webb, G.I.: Efficient search for association rules. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 99–107 (2000)
Weidner, D., Atzmueller, M., Seipel, D.: Finding maximal non-redundant association rules in tennis data. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds.) INAP/WLP/WFLP -2019. LNCS (LNAI), vol. 12057, pp. 59–78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46714-2_4
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools with Java Implementations. Morgan Kaufmann, Burlington (2000)
Zhang, A., Shi, W., Webb, G.I.: Mining significant association rules from uncertain data. Data Min. Knowl. Disc. 30, 928–963 (2016)
Zhang, S., Webb, G.I.: Further pruning for efficient association rule discovery. In: Stumptner, M., Corbett, D., Brooks, M. (eds.) AI 2001. LNCS (LNAI), vol. 2256, pp. 605–618. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45656-2_52
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Seipel, D., Waleska, M., Weidner, D., Rausch, S., Atzmueller, M. (2024). Post–mining on Association Rule Bases. In: Nowaczyk, S., et al. Artificial Intelligence. ECAI 2023 International Workshops. ECAI 2023. Communications in Computer and Information Science, vol 1948. Springer, Cham. https://doi.org/10.1007/978-3-031-50485-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-50485-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50484-6
Online ISBN: 978-3-031-50485-3
eBook Packages: Computer ScienceComputer Science (R0)