Skip to main content

Resilience and Home-Space for WSTS

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14499))

  • 116 Accesses

Abstract

Resilience of unperfect systems is a key property for improving safety by insuring that if a system could go into a bad state in \(\textsf {Bad}\) then it can also leave this bad state and reach a safe state in \(\textsf {Safe}\). We consider six types of resilience (one of them is the home-space property) defined by an upward-closed set or a downward-closed set \(\textsf {Safe}\), and by the existence of a bound on the length of minimal runs starting from a set \(\textsf {Bad}\) and reaching \(\textsf {Safe}\) (\(\textsf {Bad}\) is generally the complementary of \(\textsf {Safe}\)).

We first show that all resilience problems are undecidable for effective Well Structured Transition Systems (WSTS) with strong compatibility. We then show that resilience is decidable for Well Behaved Transition Systems (WBTS) and for WSTS with adapted effectiveness hypotheses. Most of the resilience properties are shown decidable for other classes like WSTS with the downward compatibility, VASS, lossy counter machines, reset-VASS, integer VASS and continuous VASS.

This work was partly done while the authors were supported by the Agence Nationale de la Recherche grant BraVAS (ANR-17-CE40-0028).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs with well quasi-ordered domains. Inf. Comput. 160(1–2), 109–127 (2000). https://doi.org/10.1006/inco.1999.2843

    Article  MathSciNet  Google Scholar 

  2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comput. 127(2), 91–101 (1996). https://doi.org/10.1006/inco.1996.0053

    Article  MathSciNet  Google Scholar 

  3. Araki, T., Kasami, T.: Some decision problems related to the reachability problem for petri nets. Theoret. Comput. Sci. 3(1), 85–104 (1976)

    Article  MathSciNet  Google Scholar 

  4. Bertrand, N., Schnoebelen, P.: Computable fixpoints in well-structured symbolic model checking. Formal Methods Syst. Des. 43(2), 233–267 (2013). https://doi.org/10.1007/s10703-012-0168-y

    Article  Google Scholar 

  5. Blondin, M., Finkel, A., Haase, C., Haddad, S.: The logical view on continuous petri nets. ACM Trans. Comput. Log. 18(3), 24:1–24:28 (2017). https://doi.org/10.1145/3105908

  6. Blondin, M., Finkel, A., McKenzie, P.: Well behaved transition systems. Log. Methods Comput. Sci. 13(3) (2017). https://doi.org/10.23638/LMCS-13(3:24)2017

  7. Blondin, M., Finkel, A., McKenzie, P.: Handling infinitely branching well-structured transition systems. Inf. Comput. 258, 28–49 (2018). https://doi.org/10.1016/j.ic.2017.11.001

    Article  MathSciNet  Google Scholar 

  8. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) Automata, Languages, and Programming. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055044

    Chapter  Google Scholar 

  9. Finkel, A.: Reduction and covering of infinite reachability trees. Inf. Comput. 89(2), 144–179 (1990). https://doi.org/10.1016/0890-5401(90)90009-7

    Article  MathSciNet  Google Scholar 

  10. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: complete WSTS. Log. Methods Comput. Sci. 8(3) (2012). https://doi.org/10.2168/LMCS-8(3:28)2012

  11. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing petri net extensions. Inf. Comput. 195(1–2), 1–29 (2004)

    Article  MathSciNet  Google Scholar 

  12. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1–2), 63–92 (2001). https://doi.org/10.1016/S0304-3975(00)00102-X

    Article  MathSciNet  Google Scholar 

  13. de Frutos Escrig, D., Johnen, C.: Decidability of home space property. Université de Paris-Sud. Centre d’Orsay. Laboratoire de Recherche en Informatique, Rapport de recherche n\(^{\circ }\)503 (1989)

    Google Scholar 

  14. Haase, C., Halfon, S.: Integer vector addition systems with states. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 112–124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11439-2_9

    Chapter  Google Scholar 

  15. Halfon, S.: On Effective Representations of Well Quasi-Orderings. (Représentations Effectives des Beaux Pré-Ordres). Ph.D. thesis, University of Paris-Saclay, France (2018). https://tel.archives-ouvertes.fr/tel-01945232

  16. Jancar, P.: A note on well quasi-orderings for powersets. Inf. Process. Lett. 72(5–6), 155–160 (1999). https://doi.org/10.1016/S0020-0190(99)00149-0

    Article  MathSciNet  Google Scholar 

  17. Jancar, P., Leroux, J.: Semilinear home-space is decidable for petri nets. CoRR abs/2207.02697 (2022). https://doi.org/10.48550/arXiv.2207.02697

  18. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens which carry data. Fundam. Informaticae 88(3), 251–274 (2008). http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-03

  19. Mayr, R.: Lossy counter machines. Technical report TUM-I9827, Institut für Informatik (1998)

    Google Scholar 

  20. Memmi, G., Vautherin, J.: Analysing nets by the invariant method. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 300–336. Springer, Heidelberg (1986). https://doi.org/10.1007/BFb0046843

    Chapter  Google Scholar 

  21. Özkan, O.: Decidability of resilience for well-structured graph transformation systems. In: Behr, N., Strüber, D. (eds.) ICGT 2022. LNCS, vol. 13349, pp. 38–57. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09843-7_3

    Chapter  Google Scholar 

  22. Özkan, O., Würdemann, N.: Resilience of well-structured graph transformation systems. In: Hoffmann, B., Minas, M. (eds.) Proceedings Twelfth International Workshop on Graph Computational Models, GCM@STAF 2021, Online, 22nd June 2021. EPTCS, vol. 350, pp. 69–88 (2021). https://doi.org/10.4204/EPTCS.350.5

  23. Patriarca, R., Bergström, J., Di Gravio, G., Costantino, F.: Resilience engineering: current status of the research and future challenges. Saf. Sci. 102, 79–100 (2018). https://doi.org/10.1016/j.ssci.2017.10.005

    Article  Google Scholar 

  24. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Hoboken (1981)

    Google Scholar 

  25. Prasad, S., Zuck, L.D.: Self-similarity breeds resilience. In: Gebler, D., Peters, K. (eds.) Proceedings Combined 23rd International Workshop on Expressiveness in Concurrency and 13th Workshop on Structural Operational Semantics, EXPRESS/SOS 2016, Québec City, Canada, 22nd August 2016. EPTCS, vol. 222, pp. 30–44 (2016). https://doi.org/10.4204/EPTCS.222.3

  26. Schmitz, S.: The complexity of reachability in vector addition systems. ACM SIGLOG News 3(1), 4–21 (2016). https://doi.org/10.1145/2893582.2893585

    Article  Google Scholar 

  27. Schmitz, S., Schnoebelen, P.: Algorithmic Aspects of WQO Theory (2012). https://cel.hal.science/cel-00727025

  28. Schnoebelen, P.: Lossy counter machines decidability cheat sheet. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 51–75. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15349-5_4

    Chapter  Google Scholar 

  29. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems in petri nets. Acta Informatica 21, 643–674 (1985). https://doi.org/10.1007/BF00289715

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We express our thanks to the reviewers of the VMCAI 2024 Conference for their numerous and relevant comments and improvement suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Hilaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Finkel, A., Hilaire, M. (2024). Resilience and Home-Space for WSTS. In: Dimitrova, R., Lahav, O., Wolff, S. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2024. Lecture Notes in Computer Science, vol 14499. Springer, Cham. https://doi.org/10.1007/978-3-031-50524-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50524-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50523-2

  • Online ISBN: 978-3-031-50524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics