Skip to main content

Monitoring Method of Permanent Magnet Synchronous Motor Temperature Variation Signal Based on Model Prediction

  • Conference paper
  • First Online:
Advanced Hybrid Information Processing (ADHIP 2023)

Abstract

In order to improve the monitoring accuracy and quality of permanent magnet synchronous motor (PMSM) temperature variation signal, and achieve the ideal effect of high-precision monitoring of PMSM temperature variation signal, model prediction is introduced, and the monitoring method of PMSM temperature variation signal based on model prediction is studied. The wireless sensor technology is used to collect the temperature signals of various parts of the motor, integrate, clean, replace and protocol the original data, establish a deep learning network model to predict the characteristics of the motor temperature variation, identify the motor temperature variation signal, combine the variation pruning and variation interval, and use the delayed reporting strategy to monitor the early warning of the motor temperature variation signal, complete the monitoring of temperature variation signal of permanent magnet synchronous motor based on model prediction. The experimental analysis results show that the recall rate and accuracy rate of the design method are above 90%, and maintain detection efficiency above 97%, the monitoring accuracy of the temperature variation signal of the permanent magnet synchronous motor is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pasqualotto, D., Zigliotto, M.: A comprehensive approach to convolutional neural networks-based condition monitoring of permanent magnet synchronous motor drives. IET Electr. Power Appl. 15(7), 947–962 (2021)

    Google Scholar 

  2. Tsai, M.F., Tseng, C.S., Li, N.S., et al.: Implementation of a DSP-based speed-sensorless adaptive control for permanent-magnet synchronous motor drives with uncertain parameters using linear matrix inequality approach. IET Electr. Power Appl. 16(7), 789–804 (2022)

    Google Scholar 

  3. Sahebjam, M., Sharifian, M.B.B., Feyzi, M.R., et al.: Novel methodology for direct speed control of a permanent magnet synchronous motor with sensorless operation. IET Electr. Power Appl. 15(6), 728–741 (2021)

    Google Scholar 

  4. Parvathy, M.L., Eshwar, K., Thippiripati, V.K.: A modified duty-modulated predictive current control for permanent magnet synchronous motor drive. IET Electr. Power Appl. 15(1), 25–38 (2021)

    Google Scholar 

  5. Taherzadeh, M., Hamida, M.A., Ghanes, M., et al.: Torque estimation of permanent magnet synchronous machine using improved voltage model flux estimator. IET Electr. Power Appl. 15(6), 742–753 (2021)

    Google Scholar 

  6. Vahid, Z.F., Akbar, R.: 2-D analytical on‐load electromagnetic model for double-layer slotted interior permanent magnet synchronous machines 16(3), 394–406 (2022)

    Google Scholar 

  7. Fu, R., Cao, Y.: Hybrid flux predictor-based predictive flux control of permanent magnet synchronous motor drives. IET Electr. Power Appl. 16(4), 472–482 (2022)

    Google Scholar 

  8. Qu, J., Jatskevich, J., Zhang, C., et al.: Improved multiple vector model predictive torque control of permanent magnet synchronous motor for reducing torque ripple. IET Electr. Power Appl. 15(5), 681–695 (2021)

    Google Scholar 

  9. Ahn, J.M., Lim, D.K., Jeong, G.W.: Performance analysis of the outer-rotor surface-mounted permanent magnet synchronous motor for high altitude long endurance unmanned aerial vehicle applied grain-oriented electrical steel. J. Korean Magn. Soc. 32(2), 93–99 (2022)

    Google Scholar 

  10. Lv, K., Dong, X., Zhu, C.: Research on fault-tolerant operation strategy of permanent magnet synchronous motor with common dc bus open winding phase-breaking fault. Energies 15(8), 1–12 (2022)

    Google Scholar 

  11. Yue, H., Wang, H., Wang, Y.: Adaptive fuzzy fixed‐time tracking control for permanent magnet synchronous motor. Int. J. Robust Nonlinear Control 32(5), 3078–3095 (2022)

    Google Scholar 

  12. Li, T., Ma, R., Bai, H., et al.: A compare research on third harmonic current control for five-phase permanent magnet synchronous motor. J. Northwestern Polytech. Univ. 39(4), 865–875 (2021)

    Google Scholar 

  13. Cheng, Y., Wang, Y.H., Li, C., et al.: Sliding mode control of PMSM based on Luenberger observer. Comput. Simul. 40(4), 231–235 (2023)

    Google Scholar 

  14. Larbaoui, A., Chaouch, D.E., Belabbes, B., et al.: Application of passivity-based and sliding mode control of permanent magnet synchronous motor under controlled voltage. J. Vibr. Control 28(11/12), 1267–1278 (2022)

    Google Scholar 

  15. Cui, P., Zheng, F., Zhou, X., et al.: Current harmonic suppression for permanent magnet synchronous motor based on phase compensation resonant controller. J. Vibr. Control 28(7–8), 735–744 (2022)

    Google Scholar 

  16. Bai, C., Yin, Z., Zhang, Y., et al.: Multiple-models adaptive disturbance observer-based predictive control for linear permanent-magnet synchronous motor vector drive. IEEE Trans. Power Electron. 37(8), 9596–9611 (2022)

    Google Scholar 

  17. Si, J., Feng, C., Nie, R., et al.: A novel high torque density six-phase axial-flux permanent magnet synchronous motor with 60 degrees phase-belt toroidal winding configuration. IET Electr. Power Appl. 16(1), 41–54 (2022)

    Google Scholar 

  18. Hou, X., Wang, M., You, G., et al.: Study on speed sensorless system of permanent magnet synchronous motor based on improved direct torque control. Trans. Inst. Meas. Control 44(9), 1744–1754 (2022)

    Google Scholar 

  19. Tola, O.J., Obe, E.S., Obe, C.T., et al.: Finite element analysis of dual stator winding line start permanent magnet synchronous motor. Przeglad Elektrotechniczny 98(4), 47–52 (2022)

    Google Scholar 

  20. Babaei, M., Feyzi, M., Marashi, A.N.: Extended Poincare’ model and non-linear analysis of permanent-magnet synchronous motor scalar drive system. IET Power Electron. 15(9), 855–864 (2022)

    Google Scholar 

Download references

Acknowledgement

Hunan Provincial Natural Science Foundation of China (2023JJ50270, 2023JJ50267); Hunan Provincial Department of Education Youth Fund Project (21B0690); Shaoyang City Science and Technology Plan Project (2022GZ3034); Hunan Provincial Department of Science and Technology Science and Technology Plan Project (2016TP1023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintian Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Yin, J., Sun, D., Li, H., Zhu, Q. (2024). Monitoring Method of Permanent Magnet Synchronous Motor Temperature Variation Signal Based on Model Prediction. In: Yun, L., Han, J., Han, Y. (eds) Advanced Hybrid Information Processing. ADHIP 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-031-50549-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50549-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50548-5

  • Online ISBN: 978-3-031-50549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics