Skip to main content

Smooth Switching Control Method for Parallel and Off Grid of Distributed Photovoltaic Power Grid Based on Deep Reinforcement Learning

  • Conference paper
  • First Online:
Multimedia Technology and Enhanced Learning (ICMTEL 2023)

Abstract

The parallel and off grid switching of distributed photovoltaic power grid will cause sudden changes in voltage and current, which is a key factor affecting its stable operation. Therefore, a research on the parallel and off grid smooth switching control method of distributed photovoltaic power grid based on deep reinforcement learning is proposed. The in-depth reinforcement learning method DQN algorithm is used to build the energy management model of the distributed photovoltaic power grid, explore the characteristics and laws of the distributed photovoltaic power grid, and on this basis, in-depth analysis of the transient phenomenon of the parallel off grid switching of the distributed photovoltaic power grid is carried out. Based on the PQ and VF control principles, the grid connected controller and the off grid controller are designed, and the smooth parallel off grid switching control strategy is formulated, The smooth switching control of the parallel and off grid of the distributed photovoltaic power grid can be achieved by implementing the strategy. The experimental data show that the minimum value of the sudden change coefficient of voltage and current obtained by the proposed method is 0.1 and 0.2, which fully proves that the proposed method has better control effect of parallel and off grid switching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Z., Zhang, J., Zhang, Y.: Research on photovoltaic output power prediction method based on machine learning. Comput. Simul. 37(4), 71–75,163 (2020)

    Google Scholar 

  2. Tévar-Bartolomé, G., Gómez-Expósito, A., Arcos-Vargas, A., Rodríguez-Montañés, M.: Network impact of increasing distributed PV hosting: A utility-scale case study. Solar Energy 217, 173–186 (2021)

    Google Scholar 

  3. Qu, Y., Zeng Kai, O., Hong, Z., et al.: Island detection and seamless switching control of pv-bes microgrid with phase-locked loop based on improved Gaussian filter. Adv. Power Syst. Hydroelectr. Eng. 38(7), 38–46 (2022)

    Google Scholar 

  4. Shiwei, X., Qingquan, J., Pan, L., et al.: Efficiency improvement control strategy for photovoltaic generation through dc dynamic reconfiguration. Trans. China Electrotech. Society 36(9), 1761–1770 (2021)

    Google Scholar 

  5. Chang, W., Wu, L., Wu, C., et al.: Coactive design of explainable agent-based task planning and deep reinforcement learning for human-UAVs teamwork. Chinese J. Aeronaut. 33(11), 110–125 (2020)

    Google Scholar 

  6. Liu, Q., Liu, Z., Xiong, B., et al.: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function[J]. Adv. Eng. Inform. 49(12), 101360 (2021)

    Article  Google Scholar 

  7. Patel, N., Gupta, N., Kumar, A., Babu, B.C., et al.: Pseudo affine projection assisted multitasking approach for power quality improvement in grid-interactive photovoltaic (PV) system. IET Power Electron. 13(13), 2905–2916 (2020)

    Google Scholar 

  8. Bakhshi-Jafarabadi, R., Sadeh, J.: New voltage feedback-based islanding detection method for grid-connected photovoltaic systems of microgrid with zero non-detection zone. IET Renew. Power Gener.Gener. 14(10), 1710–1719 (2020)

    Article  Google Scholar 

  9. Hussein, A.A., Chen, X., Alharbi, M., et al.: Design of a grid-tie photovoltaic system with a controlled total harmonic distortion and tri maximum power point tracking. IEEE Trans. Power Electron. 35(5), 4780–4790 (2020)

    Article  Google Scholar 

  10. Ai, C., Gao, W., Chen, L., et al.: Bivariate grid-connection speed control of hydraulic wind turbines. J. Franklin Inst. 358(1), 296–320 (2020)

    Article  MathSciNet  Google Scholar 

  11. Du, W., Wang, Y., Wang, X., et al.: Magnifying effect of weak grid connection for a PMSG to induce torsional sub-synchronous oscillations under the condition of open-loop modal resonance. IET Renew. Power Gener. Gener. 14(4), 580–590 (2020)

    Article  Google Scholar 

  12. Babu P.N., Guerrero, P., Siano, P., et al.: An improved adaptive control strategy in grid-tied PV system with active power filter for power quality enhancement. IEEE Syst. J. 15(2), 2859–2870 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinran Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Liu, W., Liu, L., Zhou, H., Liu, Y., Xu, Y. (2024). Smooth Switching Control Method for Parallel and Off Grid of Distributed Photovoltaic Power Grid Based on Deep Reinforcement Learning. In: Wang, B., Hu, Z., Jiang, X., Zhang, YD. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 532. Springer, Cham. https://doi.org/10.1007/978-3-031-50571-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50571-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50570-6

  • Online ISBN: 978-3-031-50571-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics