Abstract
With modern technology developing rapidly, “Artificial Intelligence” becomes a hot word of the times. The integration of the development of information technology and artificial intelligence provides an opportunity for education optimization. This article briefly reviews the application of artificial intelligence in teaching from four aspects: learning environment creation, learning data analysis, learning resource matching, and learning path intervention. Through the creation of learning environment, it can broaden the learning dimension and help students to learn immersive. Through intelligent analysis such as multimodal data mining and affective computing learning analysis, it can identify students’ emotional feedback for a certain content and help teachers adjust teaching content and progress with strong pertinence. Learning resource matching technology helps to match learning resources according to students’ personality characteristics and appearance differences. Teachers can carry out learning path intervention for different students and help students to adjust their learning paths and consolidate knowledge learning. Some future research directions are proposed for some research methods. This will help relevant researchers to grasp the research in this field as a whole and play an important role in promoting the application and development of artificial intelligence in the field of education.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lang, J.H.: Medicine in the era of big data and artificial intelligence. Chin. J. Matern. Child Health Res. 30(01), 1–3 (2019)
Jing, J., Huang, X.C.: Current status and future prospects of artificial intelligence-assisted diagnosis and treatment in laboratory medicine. Int. J. Lab. Med. 43(21), 2669–2673 (2022)
Zhang, K., Liu, X., Shen, J., Li, Z., Jiang, Y., et al.: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 181(6), 1423-1433.e11 (2020)
Han, X., Gao, X.: Research on AI teaching design for primary schools based on EDIPT model. Educ. Equipment Res. 39(03), 35–39 (2023)
Li, X.C., Wang, F., Meng, J.T.: Application of artificial intelligence technology in supply chain logistics. China Logistics Purchasing 2023(06), 77–78 (2023)
Wang, Y. G., Xu, J. Q., Ding, J. H.: Global framework of education 4.0: future school education and model transformation – interpretation of the world economic forum report “schools of the future: defining new education models for the fourth industrial revolution”. J. Distance Educ. 38(03), 3–14 (2020)
Zhang, G.C.: Case analysis of AR/VR technology in experimental course teaching. Electron Technol. 51(08), 145–147 (2022)
Zhong, Z., Chen, W.D.: Design strategy and case implementation of experiential learning environment based on VR technology. China Audio-Vis. Educ. 2018(02), 51–58 (2018)
Qian, X.L., Song, Z.Y., Cai, Q.: Developing immersive learning in the Metaverse: characteristics, paradigms and practices of immersive learning based on 5G+AR. Educ. Rev. 2022(06), 3–16 (2022)
Meng, Y.: Empowering education intelligence transformation with gigabit optical network and cloud VR. Commun. World 2022(18), 34–35 (2022)
Ruan, B.: VR-assisted environmental education for undergraduates. Adv. Multimed. 2022, 3721301 (2020)
Liu, M., Shan, S., Wang, R., Wu, X., Chen, X.: Learning expressionlets on spatio-temporal manifold for dynamic facial expression recognition. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1749–1756. IEEE Computer Society (2014)
Yao, S., He, N., Zhang, H., Ji, X.: Micro-expression recognition by feature points tracking. In: Proceedings of the 10th International Conference on Communications, pp. 1–4. IEEE Computer Society (2014)
Xu, L.F., Wang, J.Y., Cui, J.N., et al.: Dynamic expression recognition based on dynamic time warping and active appearance model. J. Electron. Inform. Technol. 40(2), 338–345 (2018). https://doi.org/10.11999/JEIT170848
Huang, X., Fu, R.D., Jin, W., et al.: Expression recognition based on image difference and convolutional deep belief network. Optoelectron.·Laser 29(11), 1228–1236 (2018)
Zhang, Z., Chen, T., Meng, H., et al.: SMEConvNet: a convolutional neural network for spotting spontaneous facial micro-expression from long videos. IEEE Access 6, 71143–71151 (2018). https://doi.org/10.1109/ACCESS.2018.2884349
Tran, T.-K., Vo, Q.-N., Hong, X., et al.: Dense prediction for micro-expression spotting based on deep sequence model. Electron. Imag. 2019(8), 1–6 (2019)
Ding, J., Tian, Z., Lyu, X., Wang, Q., Zou, B., Xie, H.: Real-time micro-expression detection in unlabeled long videos using optical flow and LSTM neural network. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11678, pp. 622–634. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29888-3_51
Lei, L., Li, J., Chen, T., et al.: A novel graph-TCN with a graph structured representation for micro-expression recognition. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2237–2245. ACM (2020)
Zhao, X., Ma, H., & Wang, R.: STA-GCN: spatio-temporal AU graph convolution network for facial micro-expression recognition. In: Proceedings of Chinese Conference on Pattern Recognition and Computer Vision, pp. 80–91. Springer, Berlin, Germany (2021)
Wang, S.-J., Yan, W.-J., Li, X., et al.: Micro-expression recognition using color spaces. IEEE Trans. on Image Process. 24(12), 6034–6047 (2015)
Ren, Z., et al.: LCDAE: data augmented ensemble framework for lung cancer classification. Technolo. Cancer Res. Treat. 21, 153303382211243 (2022). https://doi.org/10.1177/15330338221124372
Zhai, X.S., Xu, J.Q., Wang, Y.G.: Research on emotional computing in online education: based on multi-source data fusion. J. East China Normal Univ. (Educ. Sci.) 40(09), 32–44 (2022)
Hu, W., Wang, Z.L.: Research on intelligent recommendation evaluation of test questions based on collaborative filtering algorithm. J. Qujing Normal Univ. 41(06), 49–54 (2022)
Liu, J.J.: Research on Fusion Recommendation Method Based on Content and Collaborative Filtering. Inner Mongolia Normal University (2019)
Beijing University of Posts and Telecommunications: User Experience Research and Usability Testing. Beijing University of Posts and Telecommunications (2018)
Xiao, X.: Discussion on the application of association rule algorithm in score analysis – taking the test scores of high school students as an example. New Curriculum 16, 60 (2022)
Wang, Y., Zhou, S., Weng, Z., Chen, J.: An intelligent analysis and service design method for user feedback. J. Zhengzhou Univ. (Eng. Edn.) 44(03), 56–61 (2022)
Wang, A., Zhao, Y., Chen, Y.: Information search trail recommendation based on markov chain model and case-based reasoning. Data Inform. Manag. 5(1), 228–241 (2021). https://doi.org/10.2478/dim-2020-0047
Sun, Z.: Ontology-based Research on Resource Organization of Subject Information Gateway. Jiangsu University of Science and Technology (2010)
Ke, H.: Design of real-time data acquisition system for Internet of Things based on hybrid model. Inform. Comput. (Theory Ed.) 34(17), 40–42 (2022)
Yu, M., Liu, J., You, Y., Liu, C.: Evaluation of medium and long-term global flood forecasting based on Bayesian model averaging. Geogr. Sci. 42(09), 1646–1653 (2022)
Han, Y., Huang, R.: Design of educational resource recommendation scheme based on matching effectiveness. Microcomput. Appl. 34(05), 1–4 (2018)
Liang, T., Li, C., Li, H.: Top-k learning resource matching recommendation based on content filtering pagerank. Comput. Eng. 43(02), 220–226 (2017)
Huang, W.: Precise ideological and political exploration in colleges and universities based on student portrait analysis. J. Northeast. Univ. (Soc. Sci. Ed.) 23(03), 104–111 (2021)
Huang, B.: A preliminary study of “stratified teaching” in class groups. Teach.-Friend (02), 3 (1996)
He, L., Zhang, L.: Intervention response mode: a new model of inclusive education in the early years in the United States. J. Suzhou Univ. (Educ. Sci. Ed.) 2(04), 111–118 (2014)
Yang, W., Zhong, S., Zhao, X., Fan, J., Yang, L., Zhong, Z.: Research on the construction of elementary school mathematics learning intervention model based on learning analysis. China Dist. Educ. 04, 125–133 (2022)
Wu, F.: Entering Artificial Intelligence, pp. 200–214. Higher Education Press, Beijing (2022)
Acknowledgements
This work was supported by the Teaching Reform Research Project of Nanjing Normal University of Special Education in 2019 “Research on Cultivation of Professional Core Quality of Normal University Students from the perspective of Professional Certification – Taking Educational Technology Major as an Example”; Universities’ Philosophy and Social Science Researches Project in Jiangsu Province (No. 2020SJA0631 & No. 2019SJA0544).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Ge, H., Zhu, X., Jiang, X. (2024). A Summary of the Research Methods of Artificial Intelligence in Teaching. In: Wang, B., Hu, Z., Jiang, X., Zhang, YD. (eds) Multimedia Technology and Enhanced Learning. ICMTEL 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 535. Springer, Cham. https://doi.org/10.1007/978-3-031-50580-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-50580-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50579-9
Online ISBN: 978-3-031-50580-5
eBook Packages: Computer ScienceComputer Science (R0)