Skip to main content

Prediction of High-Resolution Soil Moisture Using Multi-source Data and Machine Learning

  • Conference paper
  • First Online:
Distributed Computing and Intelligent Technology (ICDCIT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14501))

  • 201 Accesses

Abstract

Soil moisture (SM) stands as a critical meteorological element influencing the dynamic interplay between the land and the atmosphere. Its comprehension, modeling, and examination hold key significance in unraveling this interaction. Information about the surface SM is necessary for predicting crop yield, future disasters, etc. Ground-based SM measurement is accurate but time-consuming and costly. An alternate approach for measuring SM using satellite images is becoming more popular in recent years. Surface SM retrieval with a fine-resolution still poses challenges. The proposed work considers multi-satellite data for predicting high-resolution SM of Oklahoma, USA using multiple Machine Learning (ML) algorithms, such as K-nearest neighbour (KNN), Decision tree (DT), Random forest (RF), and Extra trees regressor (ETR). A high-resolution SM map for the study region is also reported, considering the Soil Moisture Active Passive (SMAP) SM data as the base, Landsat 8 bands, and normalized difference vegetation index (NDVI) data as the reference datasets. The ETR model performed the best with a mean absolute error (MAE) of 0.940 mm, a root mean square error (RMSE) of 1.303 mm and a coefficient of determination (\(R^2\)) of 0.965. The external validation is carried out with ground-based SM data from the International Soil Moisture Network (ISMN). Both the actual SMAP SM and predicted SM values demonstrate a comparable correlation with the ISMN data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y., Liang, S., Zhu, Z., Ma, H., He, T.: Soil moisture content retrieval from Landsat 8 data using ensemble learning. ISPRS J. Photogramm. Remote. Sens. 185, 32–47 (2022)

    Article  Google Scholar 

  2. Peng, J., Loew, A., Merlin, O., Verhoest, N.E.: A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 55(2), 341–366 (2017)

    Article  Google Scholar 

  3. Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., Ghalhari, G.A.F.: Machine learning to estimate surface soil moisture from remote sensing data. Water 12(11), 3223 (2020)

    Article  Google Scholar 

  4. Kelley, C.P., Mohtadi, S., Cane, M.A., Seager, R., Kushnir, Y.: Climate change in the fertile crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. 112(11), 3241–3246 (2015)

    Article  Google Scholar 

  5. Berg, A., Sheffield, J.: Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4(2), 180–191 (2018). https://doi.org/10.1007/s40641-018-0095-0

    Article  Google Scholar 

  6. Grillakis, M.G.: Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 660, 1245–1255 (2019)

    Article  Google Scholar 

  7. Holzman, M.E., Carmona, F., Rivas, R., Niclòs, R.: Early assessment of crop yield from remotely sensed water stress and solar radiation data. ISPRS J. Photogramm. Remote. Sens. 145, 297–308 (2018)

    Article  Google Scholar 

  8. Liang, S., Wang, J.: Advanced Remote Sensing: Terrestrial Information Extraction and Applications. Academic Press, Oxford (2019)

    Google Scholar 

  9. Dorigo, W., et al.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15(5), 1675–1698 (2011)

    Article  Google Scholar 

  10. Parrens, M., Mahfouf, J.F., Barbu, A., Calvet, J.C.: Assimilation of surface soil moisture into a multilayer soil model: design and evaluation at local scale. Hydrol. Earth Syst. Sci. 18(2), 673–689 (2014)

    Article  Google Scholar 

  11. Tavakol, A., McDonough, K.R., Rahmani, V., Hutchinson, S.L., Hutchinson, J.S.: The soil moisture data bank: the ground-based, model-based, and satellite-based soil moisture data. Remote Sens. Appl. Soc. Environ. 24, 100649 (2021)

    Google Scholar 

  12. Petropoulos, G.P., Srivastava, P.K., Piles, M., Pearson, S.: Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management. Sustainability 10(1), 181 (2018)

    Article  Google Scholar 

  13. Ojha, N., et al.: Stepwise disaggregation of SMAP soil moisture at 100 m resolution using Landsat-7/8 data and a varying intermediate resolution. Remote Sens. 11, 1863 (2019)

    Article  Google Scholar 

  14. Koley, S., Jeganathan, C.: Estimation and evaluation of high spatial resolution surface soil moisture using multi-sensor multi-resolution approach. Geoderma 378, 114618 (2020)

    Article  Google Scholar 

  15. Sharma, J., Prasad, R., Srivastava, P.K., Yadav, S.A., Yadav, V.P.: Improving spatial representation of soil moisture through the incorporation of single-channel algorithm with different downscaling approaches. IEEE Trans. Geosci. Remote Sens. 60, 1–10 (2022)

    Article  Google Scholar 

  16. Abowarda, A.S., et al.: Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 255, 112301 (2021)

    Article  Google Scholar 

  17. Srivastava, P.K., Han, D., Ramirez, M.R., Islam, T.: Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour. Manag. 27, 3127–3144 (2013). https://doi.org/10.1007/s11269-013-0337-9

    Article  Google Scholar 

  18. Zeng, L., et al.: Multilayer soil moisture mapping at a regional scale from multisource data via a machine learning method. Remote Sens. 11(3), 284 (2019)

    Article  Google Scholar 

  19. Liu, Y., Yang, Y., Jing, W., Yue, X.: Comparison of different machine learning approaches for monthly satellite-based soil moisture downscaling over Northeast China. Remote Sens. 10(1), 31 (2017)

    Article  Google Scholar 

  20. Kim, D., Moon, H., Kim, H., Im, J., Choi, M.: Intercomparison of downscaling techniques for satellite soil moisture products. Adv. Meteorol. 2018, 4832423 (2018)

    Google Scholar 

  21. Im, J., Park, S., Rhee, J., Baik, J., Choi, M.: Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. 75(15), 1–19 (2016). https://doi.org/10.1007/s12665-016-5917-6

    Article  Google Scholar 

  22. Long, D., et al.: Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution. Remote Sens. Environ. 233, 111364 (2019)

    Article  Google Scholar 

  23. Abbaszadeh, P., Moradkhani, H., Zhan, X.: Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resour. Res. 55, 324–344 (2019)

    Article  Google Scholar 

  24. Xu, H., Yuan, Q., Li, T., Shen, H., Zhang, L., Jiang, H.: Quality improvement of satellite soil moisture products by fusing with in-situ measurements and GNSS-R estimates in the western continental US. Remote Sens. 10, 1351 (2018)

    Article  Google Scholar 

  25. Sudhakara, B., et al.: Spatio-temporal analysis and modeling of coastal areas for water salinity prediction. In: 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–6. IEEE (2023)

    Google Scholar 

  26. Chan, S.K., et al.: Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 54(8), 4994–5007 (2016)

    Article  Google Scholar 

  27. Vermote, E., Justice, C., Claverie, M., Franch, B.: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016)

    Article  Google Scholar 

  28. Funk, C., et al.: The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2(1), 1–21 (2015)

    Article  Google Scholar 

  29. Yamazaki, D., et al.: A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44(11), 5844–5853 (2017)

    Article  Google Scholar 

  30. Tomislav, H.: Sand content in % (kg/kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (v0.2). Zenodo (2018)

    Google Scholar 

  31. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)

    Article  Google Scholar 

  32. Song, Y., Liang, J., Lu, J., Zhao, X.: An efficient instance selection algorithm for K-nearest neighbor regression. Neurocomputing 251, 26–34 (2017)

    Article  Google Scholar 

  33. Xu, M., Watanachaturaporn, P., Varshney, P.K., Arora, M.K.: Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 97(3), 322–336 (2005)

    Article  Google Scholar 

  34. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  35. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  Google Scholar 

  36. Zhang, H., Chang, J., Zhang, L., Wang, Y., Li, Y., Wang, X.: NDVI dynamic changes and their relationship with meteorological factors and soil moisture. Environ. Earth Sci. 77(16), 1–11 (2018). https://doi.org/10.1007/s12665-018-7759-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sudhakara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sudhakara, B., Bhattacharjee, S. (2024). Prediction of High-Resolution Soil Moisture Using Multi-source Data and Machine Learning. In: Devismes, S., Mandal, P.S., Saradhi, V.V., Prasad, B., Molla, A.R., Sharma, G. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2024. Lecture Notes in Computer Science, vol 14501. Springer, Cham. https://doi.org/10.1007/978-3-031-50583-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50583-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50582-9

  • Online ISBN: 978-3-031-50583-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics