Skip to main content

A Game-Theoretic Analysis of Auditing Differentially Private Algorithms with Epistemically Disparate Herd

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14167))

Included in the following conference series:

  • 463 Accesses

Abstract

Privacy-preserving AI algorithms are widely adopted in various domains, but the lack of transparency might pose accountability issues. While auditing algorithms can address this issue, machine-based audit approaches are often costly and time-consuming. Herd audit, on the other hand, offers an alternative solution by harnessing collective intelligence. Nevertheless, the presence of epistemic disparity among auditors, resulting in varying levels of expertise and access to knowledge, may impact audit performance. An effective herd audit will establish a credible accountability threat for algorithm developers, incentivizing them to uphold their claims. In this study, our objective is to develop a systematic framework that examines the impact of herd audit on algorithm developers using the Stackelberg game approach. The optimal strategy for auditors emphasizes the importance of easy access to relevant information, as it increases the auditors’ confidence in the audit process. Similarly, the optimal choice for developers suggests that herd audit is viable when auditors face lower costs in acquiring knowledge. By enhancing transparency and accountability, herd audit contributes to the responsible development of privacy-preserving algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Bertino, E., Foo, N., et al.: Reputation management in crowdsourcing systems. In: 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), pp. 664–671. IEEE (2012)

    Google Scholar 

  2. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036 (2004)

    Article  Google Scholar 

  3. Bandy, J.: Problematic machine behavior: a systematic literature review of algorithm audits. Proc. ACM Hum.-Comput. Interact. 5(CSCW1), 1–34 (2021)

    Article  MathSciNet  Google Scholar 

  4. Bichsel, B., Gehr, T., Drachsler-Cohen, D., Tsankov, P., Vechev, M.: DP-finder: finding differential privacy violations by sampling and optimization. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, pp. 508–524. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3243734.3243863

  5. Caplin, A., Dean, M.: Revealed preference, rational inattention, and costly information acquisition. Am. Econ. Rev. 105(7), 2183–2203 (2015). https://doi.org/10.1257/aer.20140117

    Article  Google Scholar 

  6. Casorrán, C., Fortz, B., Labbé, M., Ordóñez, F.: A study of general and security stackelberg game formulations. Eur. J. Oper. Res. 278(3), 855–868 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chen, J., Zhu, Q.: Optimal contract design under asymmetric information for cloud-enabled internet of controlled things. In: Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS, vol. 9996, pp. 329–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47413-7_19

    Chapter  Google Scholar 

  8. Comeig, I., Mesa-Vázquez, E., Sendra-Pons, P., Urbano, A.: Rational herding in reward-based crowdfunding: An mturk experiment. Sustainability 12(23), 9827 (2020)

    Article  Google Scholar 

  9. Ding, Z., Wang, Y., Wang, G., Zhang, D., Kifer, D.: Detecting violations of differential privacy. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 475–489 (2018)

    Google Scholar 

  10. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  Google Scholar 

  11. Eickhoff, C.: Cognitive biases in crowdsourcing. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 162–170 (2018)

    Google Scholar 

  12. Fang, F., Liu, S., Basak, A., Zhu, Q., Kiekintveld, C.D., Kamhoua, C.A.: Introduction to game theory. In: Game Theory and Machine Learning for Cyber Security, pp. 21–46 (2021)

    Google Scholar 

  13. Fricker, M.: Epistemic Injustice: Power and the Ethics of Knowing. Oxford University Press, Oxford (2007)

    Google Scholar 

  14. Frye, H.: The technology of public shaming. Soc. Philos. Policy 38(2), 128–145 (2021)

    Article  Google Scholar 

  15. Fum, D., Del Missier, F., Stocco, A., et al.: The cognitive modeling of human behavior: why a model is (sometimes) better than 10,000 words. Cogn. Syst. Res. 8(3), 135–142 (2007)

    Article  Google Scholar 

  16. González-Prendes, A.A., Resko, S.M.: Cognitive-behavioral theory (2012)

    Google Scholar 

  17. Grasswick, H.: Epistemic injustice in science. In: The Routledge Handbook of Epistemic Injustice, pp. 313–323. Routledge (2017)

    Google Scholar 

  18. Guerrero, D., Carsteanu, A.A., Clempner, J.B.: Solving stackelberg security Markov games employing the bargaining nash approach: convergence analysis. Comput. Secur. 74, 240–257 (2018)

    Article  Google Scholar 

  19. Guszcza, J., Rahwan, I., Bible, W., Cebrian, M., Katyal, V.: Why we need to audit algorithms (2018). https://hdl.handle.net/21.11116/0000-0003-1C9E-D

  20. Han, Y., Martínez, S.: A numerical verification framework for differential privacy in estimation. IEEE Control Syst. Lett. 6, 1712–1717 (2021)

    Article  MathSciNet  Google Scholar 

  21. Horák, K., Zhu, Q., Bošanskỳ, B.: Manipulating adversary’s belief: a dynamic game approach to deception by design for proactive network security. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds.) GameSec 2017. LNCS, vol. 10575, pp. 273–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68711-7_15

    Chapter  Google Scholar 

  22. Hu, Y., Zhu, Q.: Evasion-aware Neyman-Pearson detectors: a game-theoretic approach. In: 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 6111–6117 (2022). https://doi.org/10.1109/CDC51059.2022.9993423

  23. Huang, L., Zhu, Q.: Duplicity games for deception design with an application to insider threat mitigation. IEEE Trans. Inf. Forensics Secur. 16, 4843–4856 (2021)

    Article  Google Scholar 

  24. Huang, L., Zhu, Q.: Cognitive Security: A System-Scientific Approach. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30709-6

    Book  Google Scholar 

  25. Karger, D.R., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowdsourcing systems. Oper. Res. 62(1), 1–24 (2014)

    Article  Google Scholar 

  26. Leimeister, J.M.: Collective intelligence. Bus. Inf. Syst. Eng. 2, 245–248 (2010)

    Article  Google Scholar 

  27. Manshaei, M.H., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.P.: Game theory meets network security and privacy. ACM Comput. Surv. (CSUR) 45(3), 1–39 (2013)

    Article  Google Scholar 

  28. Matějka, F., McKay, A.: Rational inattention to discrete choices: a new foundation for the multinomial logit model. Am. Econ. Rev. 105(1), 272–298 (2015)

    Article  Google Scholar 

  29. Mittelstadt, B.: Automation, algorithms, and politics| auditing for transparency in content personalization systems. Int. J. Commun. 10, 12 (2016)

    Google Scholar 

  30. Morris, R.R., Dontcheva, M., Gerber, E.M.: Priming for better performance in microtask crowdsourcing environments. IEEE Internet Comput. 16(5), 13–19 (2012)

    Article  Google Scholar 

  31. Narayanan, S.N., Ganesan, A., Joshi, K., Oates, T., Joshi, A., Finin, T.: Early detection of cybersecurity threats using collaborative cognition. In: 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC), pp. 354–363 (2018). https://doi.org/10.1109/CIC.2018.00054

  32. Pawlick, J., Zhu, Q.: Active crowd defense. In: Game Theory for Cyber Deception: From Theory to Applications, pp. 147–167 (2021)

    Google Scholar 

  33. Rajtmajer, S., Squicciarini, A., Such, J.M., Semonsen, J., Belmonte, A.: An ultimatum game model for the evolution of privacy in jointly managed content. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds.) GameSec 2017. LNCS, vol. 10575, pp. 112–130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68711-7_7

    Chapter  Google Scholar 

  34. Restuccia, F., Ghosh, N., Bhattacharjee, S., Das, S.K., Melodia, T.: Quality of information in mobile crowdsensing: survey and research challenges. ACM Trans. Sensor Netw. (TOSN) 13(4), 1–43 (2017)

    Article  Google Scholar 

  35. Sims, C.A.: Implications of rational inattention. J. Monet. Econ. 50(3), 665–690 (2003)

    Article  Google Scholar 

  36. Wang, K., Qi, X., Shu, L., Deng, D.J., Rodrigues, J.J.: Toward trustworthy crowdsourcing in the social internet of things. IEEE Wirel. Commun. 23(5), 30–36 (2016)

    Article  Google Scholar 

  37. Yu, H., et al.: Mitigating herding in hierarchical crowdsourcing networks. Sci. Rep. 6(1), 4 (2016)

    Article  Google Scholar 

  38. Yu, Y., Liu, S., Guo, L., Yeoh, P.L., Vucetic, B., Li, Y.: CrowdR-FBC: a distributed fog-blockchains for mobile crowdsourcing reputation management. IEEE Internet Things J. 7(9), 8722–8735 (2020)

    Article  Google Scholar 

  39. Zhang, R., Zhu, Q.: FlipIn: a game-theoretic cyber insurance framework for incentive-compatible cyber risk management of internet of things. IEEE Trans. Inf. Forensics Secur. 15, 2026–2041 (2019)

    Article  Google Scholar 

  40. Zhao, Y., Zhu, Q.: Evaluation on crowdsourcing research: current status and future direction. Inf. Syst. Front. 16, 417–434 (2014)

    Article  Google Scholar 

  41. Zhu, Q., Fung, C., Boutaba, R., Basar, T.: GUIDEX: a game-theoretic incentive-based mechanism for intrusion detection networks. IEEE J. Sel. Areas Commun. 30(11), 2220–2230 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ting Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, YT., Zhang, T., Zhu, Q. (2023). A Game-Theoretic Analysis of Auditing Differentially Private Algorithms with Epistemically Disparate Herd. In: Fu, J., Kroupa, T., Hayel, Y. (eds) Decision and Game Theory for Security. GameSec 2023. Lecture Notes in Computer Science, vol 14167. Springer, Cham. https://doi.org/10.1007/978-3-031-50670-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50670-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50669-7

  • Online ISBN: 978-3-031-50670-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics