Abstract
A framework to support optimised application placement across the cloud-edge continuum is described, making use of the Optimized-Greedy Nominator Heuristic (EO-GNH). The framework can be employed across a range of different Internet of Things (IoT) applications, such as smart agriculture and healthcare. The framework uses asynchronous MapReduce and parallel meta-heuristics to support the management of IoT applications, focusing on metrics such as execution performance, resource utilization and system resilience. We evaluate EO-GNH using service quality achieved through real-time resource management, across multiple application domains. Performance analysis and optimisation of EO-GNH has also been carried out to demonstrate how it can be configured for use across different IoT usage contexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almurshed, O., et al.: Adaptive edge-cloud environments for rural ai. In: 2022 IEEE International Conference on Services Computing (SCC), pp. 74–83. IEEE (2022)
Almurshed, O., Rana, O., Chard, K.: Greedy nominator heuristic: virtual function placement on fog resources. Conc. Comput. Pract. Exper. 34(6), e6765 (2022)
Almurshed, O., et al.: A fault tolerant workflow composition and deployment automation iot framework in a multi cloud edge environment. IEEE Internet Comput. (2021)
Alzahrani, A., Petri, I., Rezgui, Y.: Analysis and simulation of smart energy clusters and energy value chain for fish processing industries. Energy Rep. 6, 534–540 (2020)
Babuji, Y.N., et al.: Parsl: scalable parallel scripting in python. In: IWSG (2018)
Balducci, F., Impedovo, D., Pirlo, G.: Machine learning applications on agricultural datasets for smart farm enhancement. Machines 6(3), 38 (2018)
Benitez-Hidalgo, A., Nebro, A.J., Garcia-Nieto, J., Oregi, I., Del Ser, J.: jmetalpy: a python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 51, 100598 (2019)
Cuocolo, R., Stanzione, A., Castaldo, A., De Lucia, D.R., Imbriaco, M.: Quality control and whole-gland, zonal and lesion annotations for the prostatex challenge public dataset. Eur. J. Radiol. 138, 109647 (2021)
Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)
Hwang, F., Chen, S.J., Hwang, C.L.: Fuzzy multiple attribute decision making: methods and applications. Springer, Berlin/Heidelberg (1992). https://doi.org/10.1007/978-3-642-46768-4
Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)
Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Prostatex challenge data. Cancer Imaging Archive (2017). https://doi.org/10.7937/K9TCIA.2017.MURS5CL
Noguerol, T.M., Paulano-Godino, F., Martín-Valdivia, M.T., Menias, C.O., Luna, A.: Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J. Am. Coll. Radiol. 16(9), 1239–1247 (2019)
Pang, B., Song, Y., Zhang, C., Yang, R.: Effect of random walk methods on searching efficiency in swarm robots for area exploration. Appl. Intell. 51(7), 5189–5199 (2021)
Radouche, S., Leghris, C.: Network selection based on cosine similarity and combination of subjective and objective weighting. In: 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 1–7. IEEE (2020)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Samriya, J.K., Kumar, N.: An optimal sla based task scheduling aid of hybrid fuzzy topsis-pso algorithm in cloud environment. Mater. Today: Proc. (2020)
Sung, H., et al.: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)
Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.: Federated learning. Synth. Lect. Artifi. Intell. Mach. Learn. 13(3), 1–207 (2019)
Zeleny, M.: Compromise programming. Multiple criteria decision making (1973)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Almurshed, O. et al. (2024). A Framework for Performance Optimization of Internet of Things Applications. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 2023. Lecture Notes in Computer Science, vol 14351. Springer, Cham. https://doi.org/10.1007/978-3-031-50684-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-50684-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50683-3
Online ISBN: 978-3-031-50684-0
eBook Packages: Computer ScienceComputer Science (R0)