Skip to main content

A Framework for Performance Optimization of Internet of Things Applications

  • Conference paper
  • First Online:
Euro-Par 2023: Parallel Processing Workshops (Euro-Par 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14351))

Included in the following conference series:

Abstract

A framework to support optimised application placement across the cloud-edge continuum is described, making use of the Optimized-Greedy Nominator Heuristic (EO-GNH). The framework can be employed across a range of different Internet of Things (IoT) applications, such as smart agriculture and healthcare. The framework uses asynchronous MapReduce and parallel meta-heuristics to support the management of IoT applications, focusing on metrics such as execution performance, resource utilization and system resilience. We evaluate EO-GNH using service quality achieved through real-time resource management, across multiple application domains. Performance analysis and optimisation of EO-GNH has also been carried out to demonstrate how it can be configured for use across different IoT usage contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almurshed, O., et al.: Adaptive edge-cloud environments for rural ai. In: 2022 IEEE International Conference on Services Computing (SCC), pp. 74–83. IEEE (2022)

    Google Scholar 

  2. Almurshed, O., Rana, O., Chard, K.: Greedy nominator heuristic: virtual function placement on fog resources. Conc. Comput. Pract. Exper. 34(6), e6765 (2022)

    Article  Google Scholar 

  3. Almurshed, O., et al.: A fault tolerant workflow composition and deployment automation iot framework in a multi cloud edge environment. IEEE Internet Comput. (2021)

    Google Scholar 

  4. Alzahrani, A., Petri, I., Rezgui, Y.: Analysis and simulation of smart energy clusters and energy value chain for fish processing industries. Energy Rep. 6, 534–540 (2020)

    Article  Google Scholar 

  5. Babuji, Y.N., et al.: Parsl: scalable parallel scripting in python. In: IWSG (2018)

    Google Scholar 

  6. Balducci, F., Impedovo, D., Pirlo, G.: Machine learning applications on agricultural datasets for smart farm enhancement. Machines 6(3), 38 (2018)

    Article  Google Scholar 

  7. Benitez-Hidalgo, A., Nebro, A.J., Garcia-Nieto, J., Oregi, I., Del Ser, J.: jmetalpy: a python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 51, 100598 (2019)

    Article  Google Scholar 

  8. Cuocolo, R., Stanzione, A., Castaldo, A., De Lucia, D.R., Imbriaco, M.: Quality control and whole-gland, zonal and lesion annotations for the prostatex challenge public dataset. Eur. J. Radiol. 138, 109647 (2021)

    Article  Google Scholar 

  9. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)

    Article  Google Scholar 

  10. Hwang, F., Chen, S.J., Hwang, C.L.: Fuzzy multiple attribute decision making: methods and applications. Springer, Berlin/Heidelberg (1992). https://doi.org/10.1007/978-3-642-46768-4

  11. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)

    Article  Google Scholar 

  12. Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Prostatex challenge data. Cancer Imaging Archive (2017). https://doi.org/10.7937/K9TCIA.2017.MURS5CL

    Article  Google Scholar 

  13. Noguerol, T.M., Paulano-Godino, F., Martín-Valdivia, M.T., Menias, C.O., Luna, A.: Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J. Am. Coll. Radiol. 16(9), 1239–1247 (2019)

    Article  Google Scholar 

  14. Pang, B., Song, Y., Zhang, C., Yang, R.: Effect of random walk methods on searching efficiency in swarm robots for area exploration. Appl. Intell. 51(7), 5189–5199 (2021)

    Article  Google Scholar 

  15. Radouche, S., Leghris, C.: Network selection based on cosine similarity and combination of subjective and objective weighting. In: 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 1–7. IEEE (2020)

    Google Scholar 

  16. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  17. Samriya, J.K., Kumar, N.: An optimal sla based task scheduling aid of hybrid fuzzy topsis-pso algorithm in cloud environment. Mater. Today: Proc. (2020)

    Google Scholar 

  18. Sung, H., et al.: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  19. Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.: Federated learning. Synth. Lect. Artifi. Intell. Mach. Learn. 13(3), 1–207 (2019)

    Google Scholar 

  20. Zeleny, M.: Compromise programming. Multiple criteria decision making (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Almurshed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almurshed, O. et al. (2024). A Framework for Performance Optimization of Internet of Things Applications. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 2023. Lecture Notes in Computer Science, vol 14351. Springer, Cham. https://doi.org/10.1007/978-3-031-50684-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50684-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50683-3

  • Online ISBN: 978-3-031-50684-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics