Skip to main content

Dynamic Adaptation of Urgent Applications in the Edge-to-Cloud Continuum

  • Conference paper
  • First Online:
Euro-Par 2023: Parallel Processing Workshops (Euro-Par 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14351))

Included in the following conference series:

  • 291 Accesses

Abstract

The integration of Urgent Computing is essential in order to adhere to stringent time and quality constraints of emerging distributed applications, hence facilitating efficient decision-making processes in numerous fields. Adaptation of such applications to produce outcomes within the desired confidence range and defined time interval can be of great benefit, especially in distributed and heterogeneous execution contexts. This study provides a justification for the necessity of dynamic adaptation in applications that are time-sensitive. Furthermore, we present our viewpoint on time-sensitive applications and undertake a thorough analysis of the underlying principles and challenges that need to be resolved in order to accomplish this goal. This research aims to provide a comparative analysis of our suggested vision for adaptation in contrast to the existing literature. We provide a comprehensive explanation of the architectural framework that we plan to construct, and conclude with discussing some on-going challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://argoproj.github.io/argo-workflows/.

References

  1. Acher, M., Collet, P., Lahire, P., France, R.: Managing variability in workflow with feature model composition operators. In: Baudry, B., Wohlstadter, E. (eds.) SC 2010. LNCS, vol. 6144, pp. 17–33. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14046-4_2

    Chapter  Google Scholar 

  2. Aijaz, A., Dohler, M., Aghvami, A.H., Friderikos, V., Frodigh, M.: Realizing the tactile internet: haptic communications over next generation 5G cellular networks. IEEE Wirel. Commun. 24, 82–89 (2017)

    Article  Google Scholar 

  3. Alashhab, Z.R., Anbar, M., Singh, M.M., Leau, Y.B., Al-Sai, Z.A., Alhayja’a, S.A.: Impact of coronavirus pandemic crisis on technologies and cloud computing applications. J. Electron. Sci. Technol. 19(1), 100059 (2021)

    Article  Google Scholar 

  4. Alidra, A., et al.: SeMaFoR - self-management of fog resources with collaborative decentralized controllers. In: SEAMS 2023 - IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (2023). https://doi.org/10.1109/SEAMS59076.2023.00014

  5. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-Stabilizing Algorithms. (2019). https://doi.org/10.2200/S00908ED1V01Y201903DCT015

    Book  Google Scholar 

  6. Balouek-Thomert, D., Renart, E.G., Zamani, A.R., Simonet, A., Parashar, M.: Towards a computing continuum: enabling edge-to-cloud integration for data-driven workflows. Int. J. High Perform. Comput. Appl. 33, 1159–1174 (2019)

    Article  Google Scholar 

  7. Balouek-Thomert, D., Rodero, I., Parashar, M.: Harnessing the computing continuum for urgent science. ACM SIGMETRICS Perform. Rev. 48, 41–46 (2020)

    Article  Google Scholar 

  8. Balouek-Thomert, D., Silva, P., Fauvel, K., Costan, A., Antoniu, G., Parashar, M.: MDSC: modelling distributed stream processing across the edge-to-cloud continuum. In: Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion, pp. 1–6 (2021)

    Google Scholar 

  9. Beckman, P., Dongarra, J., Ferrier, N., Fox, G., Moore, T., Reed, D., Beck, M.: Harnessing the computing continuum for programming our world. In: Fog Computing: Theory and Practice: Theory and Practice, Wiley (2019)

    Google Scholar 

  10. Boukhanovsky, A.V., Krzhizhanovskaya, V.V., Bubak, M.: Urgent computing for decision support in critical situations. Future Gener. Comput. Syst. 79, 111–113 (2018)

    Article  Google Scholar 

  11. Brown, N., et al.: The role of interactive super-computing in using HPC for urgent decision making. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC High Performance 2019. LNCS, vol. 11887, pp. 528–540. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34356-9_40

    Chapter  Google Scholar 

  12. Cadorel, E., Coullon, H., Menaud, J.M.: Handling heterogeneous workflows in the cloud while enhancing optimizations and performance. In: 2022 IEEE 15th International Conference on Cloud Computing (CLOUD) (2022). https://doi.org/10.1109/CLOUD55607.2022.00021

  13. Chardet, M., Coullon, H., Pérez, C.: Predictable efficiency for reconfiguration of service-oriented systems with concerto. In: CCGrid 2020 : 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (2020). https://doi.org/10.1109/CCGrid49817.2020.00-59

  14. Chardet, M., Coullon, H., Robillard, S.: Toward safe and efficient reconfiguration with concerto. Sci. Comput. Program. (2021). https://doi.org/10.1016/j.scico.2020.102582

    Article  Google Scholar 

  15. Coullon, H., Henrio, L., Loulergue, F., Robillard, S.: Component-based distributed software reconfiguration: a verification-oriented survey. ACM Comput. Surv. 56, 1–37 (2023). https://doi.org/10.1145/3595376

    Article  Google Scholar 

  16. Fauvel, K., al.: A Distributed multi-sensor machine learning approach to earthquake early warning. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  17. Friji, H., Hamadi, R., Ghazzai, H., Besbes, H., Massoud, Y.: A generalized mechanistic model for assessing and forecasting the spread of the COVID-19 pandemic. IEEE Access 9, 13266–13285 (2021)

    Article  Google Scholar 

  18. Ganguli, M., Ranganath, S., Ravisundar, S., Layek, A., Ilangovan, D., Verplanke, E.: Challenges and opportunities in performance benchmarking of service mesh for the edge. In: 2021 IEEE International Conference on Edge Computing (EDGE) (2021). https://doi.org/10.1109/EDGE53862.2021.00020

  19. Gibb, G., Nash, R., Brown, N., Prodan, B.: The technologies required for fusing HPC and real-time data to support urgent computing. In: 2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC), pp. 24–34. IEEE (2019)

    Google Scholar 

  20. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36, 41–50 (2003)

    Article  Google Scholar 

  21. Kohler, M.D., et al.: Earthquake early warning ShakeAlert 2.0: public rollout. Seismol. Res. Lett. 91(3), 1763–1775 (2020). https://doi.org/10.1785/0220190245

    Article  Google Scholar 

  22. Kumar, R., Baughman, M., Chard, R., Li, Z., Babuji, Y., Foster, I., Chard, K.: Coding the computing continuum: fluid function execution in heterogeneous computing environments. In: 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 66–75. IEEE (2021)

    Google Scholar 

  23. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4, 382–400 (1982)

    Article  Google Scholar 

  24. Leong, S.H., Kranzlmüller, D.: Towards a general definition of urgent computing. Procedia Computer Science 51, 2337–2346 (2015)

    Article  Google Scholar 

  25. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: challenges, state of the art, and future research opportunities. In: 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE) (2019)

    Google Scholar 

  26. Peleg, K., Bodas, M., Hertelendy, A.J., Kirsch, T.D.: The COVID-19 pandemic challenge to the all-hazards approach for disaster planning. Int. J. Disaster Risk Reduction 55, 102103 (2021)

    Article  Google Scholar 

  27. Robillard, S., Coullon, H.: SMT-based planning synthesis for distributed system reconfigurations. In: FASE 2022 : 25th International Conference on Fundamental Approaches to Software Engineering (2022). https://doi.org/10.1007/978-3-030-99429-7_15

  28. Rochford, K., Strauss, J.A., Kong, Q., Allen, R.M.: MyShake: using human-centered design methods to promote engagement in a smartphone-based global seismic network. Front. Earth Sci. 6, 237 (2018)

    Article  Google Scholar 

  29. Sousa, G., Rudametkin, W., Duchien, L.: Automated setup of multi-cloud environments for microservices applications. In: 2016 IEEE 9th International Conference on Cloud Computing (CLOUD) (2016)

    Google Scholar 

  30. Van Den Berg, D., et al.: Challenges in haptic communications over the tactile internet. IEEE Access 5, 23502–23518 (2017)

    Article  Google Scholar 

  31. Yih-Min, W., Ta-liang, T.: A virtual sub-network approach to earthquake early warning. Bull. Seism. Soc. Am. 92, 2008–2018 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Balouek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balouek, D., Coullon, H. (2024). Dynamic Adaptation of Urgent Applications in the Edge-to-Cloud Continuum. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 2023. Lecture Notes in Computer Science, vol 14351. Springer, Cham. https://doi.org/10.1007/978-3-031-50684-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50684-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50683-3

  • Online ISBN: 978-3-031-50684-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics