Abstract
The integration of Urgent Computing is essential in order to adhere to stringent time and quality constraints of emerging distributed applications, hence facilitating efficient decision-making processes in numerous fields. Adaptation of such applications to produce outcomes within the desired confidence range and defined time interval can be of great benefit, especially in distributed and heterogeneous execution contexts. This study provides a justification for the necessity of dynamic adaptation in applications that are time-sensitive. Furthermore, we present our viewpoint on time-sensitive applications and undertake a thorough analysis of the underlying principles and challenges that need to be resolved in order to accomplish this goal. This research aims to provide a comparative analysis of our suggested vision for adaptation in contrast to the existing literature. We provide a comprehensive explanation of the architectural framework that we plan to construct, and conclude with discussing some on-going challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acher, M., Collet, P., Lahire, P., France, R.: Managing variability in workflow with feature model composition operators. In: Baudry, B., Wohlstadter, E. (eds.) SC 2010. LNCS, vol. 6144, pp. 17–33. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14046-4_2
Aijaz, A., Dohler, M., Aghvami, A.H., Friderikos, V., Frodigh, M.: Realizing the tactile internet: haptic communications over next generation 5G cellular networks. IEEE Wirel. Commun. 24, 82–89 (2017)
Alashhab, Z.R., Anbar, M., Singh, M.M., Leau, Y.B., Al-Sai, Z.A., Alhayja’a, S.A.: Impact of coronavirus pandemic crisis on technologies and cloud computing applications. J. Electron. Sci. Technol. 19(1), 100059 (2021)
Alidra, A., et al.: SeMaFoR - self-management of fog resources with collaborative decentralized controllers. In: SEAMS 2023 - IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (2023). https://doi.org/10.1109/SEAMS59076.2023.00014
Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-Stabilizing Algorithms. (2019). https://doi.org/10.2200/S00908ED1V01Y201903DCT015
Balouek-Thomert, D., Renart, E.G., Zamani, A.R., Simonet, A., Parashar, M.: Towards a computing continuum: enabling edge-to-cloud integration for data-driven workflows. Int. J. High Perform. Comput. Appl. 33, 1159–1174 (2019)
Balouek-Thomert, D., Rodero, I., Parashar, M.: Harnessing the computing continuum for urgent science. ACM SIGMETRICS Perform. Rev. 48, 41–46 (2020)
Balouek-Thomert, D., Silva, P., Fauvel, K., Costan, A., Antoniu, G., Parashar, M.: MDSC: modelling distributed stream processing across the edge-to-cloud continuum. In: Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion, pp. 1–6 (2021)
Beckman, P., Dongarra, J., Ferrier, N., Fox, G., Moore, T., Reed, D., Beck, M.: Harnessing the computing continuum for programming our world. In: Fog Computing: Theory and Practice: Theory and Practice, Wiley (2019)
Boukhanovsky, A.V., Krzhizhanovskaya, V.V., Bubak, M.: Urgent computing for decision support in critical situations. Future Gener. Comput. Syst. 79, 111–113 (2018)
Brown, N., et al.: The role of interactive super-computing in using HPC for urgent decision making. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC High Performance 2019. LNCS, vol. 11887, pp. 528–540. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34356-9_40
Cadorel, E., Coullon, H., Menaud, J.M.: Handling heterogeneous workflows in the cloud while enhancing optimizations and performance. In: 2022 IEEE 15th International Conference on Cloud Computing (CLOUD) (2022). https://doi.org/10.1109/CLOUD55607.2022.00021
Chardet, M., Coullon, H., Pérez, C.: Predictable efficiency for reconfiguration of service-oriented systems with concerto. In: CCGrid 2020 : 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (2020). https://doi.org/10.1109/CCGrid49817.2020.00-59
Chardet, M., Coullon, H., Robillard, S.: Toward safe and efficient reconfiguration with concerto. Sci. Comput. Program. (2021). https://doi.org/10.1016/j.scico.2020.102582
Coullon, H., Henrio, L., Loulergue, F., Robillard, S.: Component-based distributed software reconfiguration: a verification-oriented survey. ACM Comput. Surv. 56, 1–37 (2023). https://doi.org/10.1145/3595376
Fauvel, K., al.: A Distributed multi-sensor machine learning approach to earthquake early warning. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (2020)
Friji, H., Hamadi, R., Ghazzai, H., Besbes, H., Massoud, Y.: A generalized mechanistic model for assessing and forecasting the spread of the COVID-19 pandemic. IEEE Access 9, 13266–13285 (2021)
Ganguli, M., Ranganath, S., Ravisundar, S., Layek, A., Ilangovan, D., Verplanke, E.: Challenges and opportunities in performance benchmarking of service mesh for the edge. In: 2021 IEEE International Conference on Edge Computing (EDGE) (2021). https://doi.org/10.1109/EDGE53862.2021.00020
Gibb, G., Nash, R., Brown, N., Prodan, B.: The technologies required for fusing HPC and real-time data to support urgent computing. In: 2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC), pp. 24–34. IEEE (2019)
Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36, 41–50 (2003)
Kohler, M.D., et al.: Earthquake early warning ShakeAlert 2.0: public rollout. Seismol. Res. Lett. 91(3), 1763–1775 (2020). https://doi.org/10.1785/0220190245
Kumar, R., Baughman, M., Chard, R., Li, Z., Babuji, Y., Foster, I., Chard, K.: Coding the computing continuum: fluid function execution in heterogeneous computing environments. In: 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 66–75. IEEE (2021)
Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4, 382–400 (1982)
Leong, S.H., Kranzlmüller, D.: Towards a general definition of urgent computing. Procedia Computer Science 51, 2337–2346 (2015)
Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: challenges, state of the art, and future research opportunities. In: 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE) (2019)
Peleg, K., Bodas, M., Hertelendy, A.J., Kirsch, T.D.: The COVID-19 pandemic challenge to the all-hazards approach for disaster planning. Int. J. Disaster Risk Reduction 55, 102103 (2021)
Robillard, S., Coullon, H.: SMT-based planning synthesis for distributed system reconfigurations. In: FASE 2022 : 25th International Conference on Fundamental Approaches to Software Engineering (2022). https://doi.org/10.1007/978-3-030-99429-7_15
Rochford, K., Strauss, J.A., Kong, Q., Allen, R.M.: MyShake: using human-centered design methods to promote engagement in a smartphone-based global seismic network. Front. Earth Sci. 6, 237 (2018)
Sousa, G., Rudametkin, W., Duchien, L.: Automated setup of multi-cloud environments for microservices applications. In: 2016 IEEE 9th International Conference on Cloud Computing (CLOUD) (2016)
Van Den Berg, D., et al.: Challenges in haptic communications over the tactile internet. IEEE Access 5, 23502–23518 (2017)
Yih-Min, W., Ta-liang, T.: A virtual sub-network approach to earthquake early warning. Bull. Seism. Soc. Am. 92, 2008–2018 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Balouek, D., Coullon, H. (2024). Dynamic Adaptation of Urgent Applications in the Edge-to-Cloud Continuum. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 2023. Lecture Notes in Computer Science, vol 14351. Springer, Cham. https://doi.org/10.1007/978-3-031-50684-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-50684-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50683-3
Online ISBN: 978-3-031-50684-0
eBook Packages: Computer ScienceComputer Science (R0)