
An approach to performance portability through
generic programming

Andreas Hadjigeorgiou1, Christodoulos Stylianou2, Michèle Weiland2, Dirk
Jacob Verschuur3, and Jacob Finkenrath1

1 The Cyprus Institute, Nicosia, Cyprus
a.hadjigeorgiou@cyi.ac.cy

j.finkenrath@cyi.ac.cy
2 EPCC, University of Edinburgh, Edinburgh, UK

c.stylianou@ed.ac.uk

m.weiland@epcc.ed.ac.uk
3 Delft University of Technology, Delft, The Netherlands

d.j.verschuur@tudelft.nl

Abstract. The expanding hardware diversity in high performance com-
puting adds enormous complexity to scientific software development.
Developers who aim to write maintainable software have two options:
1) To use a so-called data locality abstraction that handles portability
internally, thereby, performance-productivity becomes a trade off. Such
abstractions usually come in the form of libraries, domain-specific lan-
guages, and run-time systems. 2) To use generic programming where per-
formance, productivity and portability are subject to software design. In
the direction of the second, this work describes a design approach that
allows the integration of low-level and verbose programming tools into
high-level generic algorithms based on template meta-programming in
C++. This enables the development of performance-portable applications
targeting host-device computer architectures, such as CPUs and GPUs.
With a suitable design in place, the extensibility of generic algorithms to
new hardware becomes a well defined procedure that can be developed
in isolation from other parts of the code. That allows scientific software
to be maintainable and efficient in a period of diversifying hardware in
HPC. As proof of concept, a finite-difference modelling algorithm for
the acoustic wave equation is developed and benchmarked using roofline
model analysis on Intel Xeon Gold 6248 CPU, Nvidia Tesla V100 GPU,
and AMD MI100 GPU.

Keywords: HPC · Performance · Portability · Generic Programming

1 Introduction

The diversity of computer architectures in High Performance Computing (HPC)
has evolved remarkably in the past two decades. During this period, HPC sys-
tems advanced from single-core processing units (PUs), to many-core PUs. In
other words, performance scaling has been achieved, to a big extend, with ad-
ditional parallelism at PU-level. However, parallelism comes in different forms.

ar
X

iv
:2

31
1.

05
03

8v
1

 [
cs

.S
E

]
 8

 N
ov

 2
02

3

2 Hadjigeorgiou A. et al.

Briefly, CPUs and GPUs dominate the HPC landscape today. At the same time,
even PUs that fall within the same category, e.g. CPU, may pose differences in
their architecture based on how cores are physically placed on chips, e.g. NUMA
regions, etc. This evolution has dramatic consequences on the software develop-
ment side. A single optimized C or FORTRAN code that has been considered a
performance portable solution in the past is neither sufficient nor fully-portable
at all nowadays. As a result, during the past decade efforts were made for the de-
velopment of abstraction layers, such as Kokkos [3] and RAJA [2], that enhance
the development of portable HPC applications. At the same time, these efforts
aim to increase productivity, by easing the development effort. The outcomes
from these efforts come in the form of programming models that provide a set of
memory spaces, execution spaces & policies, iteration ranges, data layouts, and
other concepts, which serve as building blocks for the development of parallel
single-source code that is performance portable to one degree or another [4].

Performance critical software is always developed using low-level verbose pro-
gramming tools, which expose to the developers ways to optimally map code
to the target hardware [11]. On top of this, performance optimization usually
requires considerable changes in the software design. Therefore, performance
should be considered in the design phase of the software, a step that is usu-
ally underestimated in computational science [8,6]. This work is not an attempt
to provide an alternative programming model equivalent to the performance
portability layers described in the previous paragraph, despite the fact that it
is inspired from them. Rather, we discuss a design approach that allows devel-
opers to achieve performance and portability by separating two concerns: the
algorithm as a multi-step process that evolves in-time, and its actual code im-
plementation details. This separation is achieved through static polymorphism
using meta-programming techniques based on C++ templates, which falls under
the broad category of generic programming [9].

Fig. 1. Host-device computer architecture as an abstract machine model [1].

The host-device model introduced as an abstract machine model towards exa-
scale computing [1], refers to a machine that has a multi-core processor (host),
which is coupled with one or more discrete accelerators (devices). Each accelera-

An approach to performance portability through generic programming 3

tor has a local, high throughput, and physically separated memory as illustrated
in Figure 1. The model represents accurately the node architecture of most super-
computing systems nowadays. The discussed design approach allows to integrate
low-level programming techniques into high-level abstractions in order to target
in a performance portable manner host-device computer architectures.

By no means we support this is a silver bullet approach to solve the perfor-
mance portability challenge, or that alternative approaches might not be proven
equally well. It is however, a robust and simple approach to achieve performance
and portability, and good software engineering practises to be incorporated in
the development process, such as: separation of concerns, extensibility, ease of
testing, and memory safety. As a proof of concept (POC), a two-dimensional
Finite-Difference (FD) modelling scheme for the acoustic wave propagation is
developed and made publicly available4 on GitHub. We select this POC appli-
cation since its stencil-based nature represents well enough a range of existing
applications and at the same time it is simple and broadly understood by the
general audience of HPC.

2 Performance portability by design

From the science point of view, code is seen as an asset that allows scientists to
do more in terms of simulations, analyses, visualization, etc. However, from the
software engineering point of view, code is debt. The larger the code-base it is, the
more difficult is to manage. Software design, is what allows it to be manageable
and grow without collapsing from its own weight. These concepts have been of
great concern in the broad computer science domain since long time ago [7].
For scientific computing, the challenge introduced from the emerging hardware
diversity in HPC makes this necessity even more apparent. To our experience,
the major problem in many scientific applications is usually not the effort itself
that is needed for re-writing some part of the code for portability to another
architecture. It is rather that by design the applications have architecture-specific
code to all their extent and silent assumptions about the location of data, thus,
the transition becomes a redundant, not well defined, and as a consequence
erroneous procedure. All these problems, become even more apparent due to the
lack of a regression test framework in most cases. Developing applications for
heterogeneous computer architectures requires radical rethinking of the scientific
software development approach.

For the development of HPC applications we came across two approaches.
On the one hand, is the use of so-called data locality abstractions [13] (DLAs)
that come in the form of libraries, domain-specific languages, or run-time sys-
tems with common theme the increase of productivity. Portability is handled
internally from the DLAs, thus, the developer does not require hardware spe-
cific knowledge. On the other hand, is the use of meta-programming techniques
[11] that allow integrating verbose programming tools into generic interfaces with

4 https://github.com/ahadji05/pp-template/

https://github.com/ahadji05/pp-template/

4 Hadjigeorgiou A. et al.

Fig. 2. Software design for performance and portability through generic programming.

common theme the increase of performance. Portability is expanded by integrat-
ing more programming models under the generic interface. In practice, portabil-
ity is easier following the first approach, however, the performance boundary can
be pushed further following the second one. The approach described in this work
is in the direction of the second. Using C++ templates and meta-programming
techniques, we discuss the development of generic containers, routines, and algo-
rithms. The term generic denotes template-with-respect-to two types/concepts:
Memory-Space and Execution-Space. These serve as the core types that allow
to form a generic approach to target host-device computer architectures.

Figure 2 illustrates the software design that we describe in this work. The
dashed horizontal line demonstrates the separation of two concerns: 1) the de-
velopment of generic building-blocks, 2) the implementation details. In this
case, generic denotes architecture-agnostic, whereas details denotes architecture-
specific. The end goal is to develop building-blocks in the form of containers,
routines, and algorithms, which allow the development of applications that are
transferable across architectures. Then, based on compile-time choice, the be-
haviour of the building-blocks is resolved according to the implementation details
we select. Finally, the behaviour has two aspects: first, the location of the data,
second, the access pattern.

This design assumes that host is always a CPU that is programmable with
C++, and the device could be either the host itself, or an accelerator programmable
with a low-level programming tool that is supported in the back-end. In our case
the back-end is developed using OpenMP, CUDA and HIP. Serial is the sequen-
tial processing back-end that serves as reference for testing. At the same time,
the application is extensible to any other back-end we may want to develop in
the future. As long as a future implementation adheres to the interface that is
already in-place, all code on top of is reused without any additional change.

An approach to performance portability through generic programming 5

3 Concern 1: Building blocks

The core concepts we identify as minimum requirement for separating the im-
plementations details from the generic algorithms are two: Memory Space and
Execution Space. The role of Memory Space is to define the location of the data,
whereas the Execution Space selects the right back-end that provides the imple-
mentation details. In fact, this allows to leverage the type system of the language
in order to develop compile-time rules that impose memory safety.

The Memory Spaces are concrete classes that provide five basic memory man-
agement operations: allocate, release, copy, copyFromHost, and copyToHost.
These operations are implemented as static methods so they are bound to their
class name. Thus, a Memory Space passed as template parameter to other
generic classes provides these operations. The right hand side of Figure 3, il-
lustrates the three Memory Spaces proposed and developed in our case. The
default is the host memory space, namely MemSpaceHost. For this particular
space, the three copy operations have the same underlying implementation; copy
data within host memory space. They diverge only for the other two memory
spaces MemSpaceCuda and MemSpaceHip. On the left hand side in Figure 3, the
Execution Spaces, are concrete classes as well that are being used for explicit
specialization of routines based on the tag-dispatching idiom that is discussed in
Section 4. Moreover, each Execution Space has one type-trait that defines the
accessible Memory Space. This allows the development of type-rules to ensure
that the accessible data are on the right location.

Fig. 3. Execution spaces and their corresponding Memory Spaces for targeting CPU
and GPU architectures.

For the development of architecture-agnostic applications we identify three generic
building blocks: containers, routines, and algorithms. They are generic in the
sense that their type is to-be-specified according to template parameters. The
two template parameters that define them are: Memory Space and Execution
Space. In essence, the containers hold the data that are processed during run-
time in a suitable location, processing comes from the routines that act on the
containers with a suitable access pattern, and finally, the algorithms are collec-
tions of routines and containers.

Containers are generic C++ data-structures, e.g. class or struct, with one tem-
plate parameter that resolves to a valid Memory Space. The scope of the Memory

6 Hadjigeorgiou A. et al.

Space is to determine the location of the container’s data by providing the five
basic memory management operations that we mentioned earlier. Containers rep-
resent the main entities in our application. For example, for the finite-difference
scheme that we developed as POC app, we developed the ScalarField<Mem>

container to represent velocity and wave fields. Containers may have metadata
explicitly on host that serve control-flow and run-time assertions. The data re-
lated to the processing done during the simulation are located on the provided
Memory Space (see template parameter Mem) so they are directly accessible from
the routines.

Routines are generic C++ functions with two template parameters: An Execu-
tion and a Memory space. The routines operate on the containers and provide the
processing steps that our application involves. The Memory Space determines
the location of data in the containers that are passed as parameters to the func-
tion. The Execution Space is used as a tag parameter that dispatches the routine
to a back-end implementation. This approach leverages the function overloading
feature of C++. The Execution Space and the Memory Space need to be com-
patible, otherwise the application could crash due to an invalid memory access.
The language’s type system allows to develop rules, e.g. using std::enable if,
in order to let the compiler inspect this compatibility. This allows to capture
with a meaningful message an invalid implementation at compile-time, instead
of having to debug an invalid memory access that occurs out of the blue.

Algorithms are generic C++ classes with a single template parameter represent-
ing the Execution Space. The Execution Space provides its accessible Memory
Space as a type-trait, which is used internally in the body of the class. The
algorithms are collections of containers and routines in the sense that they have
containers as member variables and their methods apply operations on them
through one or more routines. The class provides no information whether and
how the computation is parallelised, and if data reside on the CPU or the GPU,
or so. All these concerns resolve to the implementation that is a separate part of
the code. The scope of the algorithm as a meta-program is first, to make sure that
given an Execution Space, the correct Memory Space is selected based on which
the containers allocate their data suitably. Second, based on the Memory Space
and the Execution Space the routines dispatch at compile-time to the correct
back-end implementation. This design approach adds to the quality of the code
in the sense that it makes it more easy to read and understand, reusable across
different architectures due to its generic nature, and memory safe. At the same
time, since the implementation is decoupled from the interface, we can use any
low-level programming tool to develop it efficiently based on the target-hardware
without altering the aforementioned.

4 Concern 2: Implementation details

In Section 3, we discussed the development of generic containers, routines, and
algorithms based on two template parameters: Memory Space and Execution

An approach to performance portability through generic programming 7

Space. These serve as the building blocks for the development of performance
portable applications. In here, we discuss how we develop the architecture-
specific implementations in such way that they adhere to the common abstract
interface and can be identified at compile-time through tag dispatching.

As an example, let us consider a generic routine, namely dosomething, that
applies some processing on a container X. The specializations5 for OpenMP and
CUDA implementations are shown in Listings 1.1 and 1.2 respectively.

template<>
void dosomething (X<MemSpaceHost>& A , . . . ,ExecSpaceOpenMP tag){

\\ p a r a l l e l OpenMP code . . .
}

Listing 1.1. Specialisation of the OpenMP implementation.

template<>
void dosomething (X<MemSpaceCuda>& A , . . . , ExecSpaceCuda tag){

\\ con f i g−launch CUDA kerne l . . .
}

Listing 1.2. Specialisation of the Cuda implementation

Listing 1.1, indicates the function definition for the OpenMP back-end. This spe-
cialization, receives as parameter, among others, a container X whose data is
allocated on host using the corresponding Memory Space. Thus, the data are
accessible by a parallel OpenMP implementation. In Listing 1.2, the function is
launching a CUDA kernel, thus, container needs to have the data on device. In
that case, this is guaranteed by MemSpaceCuda, which is the Memory Space of
container X.

Each template specialization is implemented in a different translation-unit
isolated from others. Alternatively, conditional guards6 are used to diverge source-
code compilation based on which architecture is targeted. More specializations
can be developed as long as they adhere to the interface that is provided from the
generic routine, and a valid combination of Memory-Execution spaces is used. In
that sense, a generic codebase is extensible to other hardware without conflicts
with existing parts of the code. As a result, extending portability becomes a
well defined procedure that is trivial and memory-safe. At the same time, per-
formance is not compromised or limited by any third party library since it can
be specifically implemented with any low-level programming tool of choice.

Based on the design approach that is described in this work, we developed
four Execution Space options and three Memory Space options as shown in
Figure 3. The Serial and OpenMP Execution Spaces are compatible with the
MemSpaceHost. The CUDA and HIP Execution Spaces are compatible with the
MemSpaceCuda and MemSpaceHip respectively. These options are sufficient to
cover portability on the majority of HPC systems as of today.

5 In C++ this is so-called explicit (full) template specialization
6 #ifdef, #else, #endif, etc.

8 Hadjigeorgiou A. et al.

5 Start and stop

The discussed design approach targets host-device computer architectures, thus,
the start and stop of applications need to pass through the host always for I/O
purposes. Thereby, in a program’s lifetime, there must coexist one explicit host
Memory Space, namely MemSpaceHost, and one alias for device Memory Space,
namely memo space. By default, memo space can be the host Memory Space
itself if no accelerator is targeted.

How an application starts: Applications are organized based on the assump-
tion that there is a host PU whose resources are managed with MemSpaceHost,
and a device whose resources are managed with memo space. The latter, is de-
fined at compile-time based on the target architecture. All input data are al-
located using MemSpaceHost, so they are initialized on host. All containers are
instantiated using memo space. The, input data are copied into the containers
from host using the method memo space::copyFromHost. Once the data are
copied into the containers they are directly accessible from the generic routines
and algorithms. This approach fits the host-device model, which was introduced
in Figure 1, because it is a unified approach that allows to initialize the generic
containers with data, either on host, or the device, using the same interface.

How an application ends: An application ends with output data printed on
screen and/or stored in output files. To meet this requirement within the context
of the host-device model we follow an analogous to the previous paragraph’s ap-
proach. The containers have their data managed by memo space, which resolves
either to host, or the device memory. Thereby, before output there must be
an explicit call for transfer to the host memory. In analogoy to the previous
paragraph, this is performed via the method memo space::copyToHost.

6 Testing as an integral part

Testing is the proof of correctness and should be an integral part of scientific soft-
ware. The purpose is to verify in a quantitative manner that the implementation
is correct. It applies to individual routines such they are expected to return a
specific output given a specific input, so-called unit-tests. Additionally, software
should be tested in the connectivity between different parts as error may ex-
ist in the glue-code, namely integration-tests. Testing increases the development
curve, however, the returns pay-off the effort and provide a proof that indeed the
software behaves exactly as it should. According to Prabhu et al. [10], scientists
spend as much as half of their programming effort on finding and fixing errors
using ”primitive” debugging approaches.

Within the context of our discussion, the development of implementations
using different programming tools that provide the same routines and algorithms
make the need for testing even more apparent. Ideally, we do not want the
effort of developing different architecture-specific implementations to extend the
testing effort. This is possible, if the tests are applied to the layer of generic
containers, routines, and algorithms. To do so, the tests are developed based on

An approach to performance portability through generic programming 9

the ideas that we discussed in Section 5. We can summarize the procedure in
the following steps:

1. the input data are initialised explicitly on Host (MemSpaceHost)
2. using memo space::copyFromHost the input data are copied into containers
3. the routine(s) under testing are invoked
4. using memo space::copyToHost the output data are copied back to Host
5. test-assertions are performed on Host .

The memo space is an alias that by conditional compilation resolves to one
of the available Memory Spaces from Figure 3, depending on which backend we
want to test against. Based on this approach, all implementations are tested
through the same input-output criteria and verify their equivalence. Both unit
and integration tests can be effectively implemented based on this approach.
Furthermore, this makes code easier and safer to extend in the sense that if a
new hardware emerges and we want to develop an implementation to target it,
the tests that are already in-place serve as the channels to ”pass” through.

7 Proof of concept

As POC, a finite-difference modelling scheme for the two-dimensional acoustic
wave equation:

∂2P (t, x, z)

∂t2
= v(x, z)2

(
∂2P (t, x, z)

∂x2
+

∂2P (t, x, z)

∂z2

)
+ S(t) , (1)

has been developed, where P is the pressure amplitude, v is the space-dependent
velocity, and S is a time-dependent source. The FD modelling is performed by
the WaveSimulator algorithm7, which has been developed based on the discus-
sion for generic building-blocks in Section 3. Listing 1.3 is a brief view of the
algorithm’s interface that shows how the containers and routines that form up
the algorithm come together.

template<class ExecSpace>
class WaveSimulator {

public :
using MemSpace = typename ExecSpace : : a c c e s s i b l e s p a c e ;
void run (){

add source (Sca l a rF i e ld<MemSpace>&P, . . . , ExecSpace ()) ;
f d pzz (Sca l a rF i e ld<MemSpace>&Pzz , . . . , ExecSpace ()) ;
fd pxx (Sca la rF i e ld<MemSpace>&Pxx , . . . , ExecSpace ()) ;
fd t ime (Sca la rF i e ld<MemSpace>&Pnew , . . . , ExecSpace ()) ;
swap (Pold , P) ;
swap (P, Pnew) ;

}
// . . . o ther p u b l i c methods e . g . s e t / g e t

7 https://github.com/ahadji05/pp-template/tree/main/include/algorithms

10 Hadjigeorgiou A. et al.

private :
S ca l a rF i e ld<MemSpace> Pnew , P, Pold , Pxx , Pzz , V;
d type dt , dh ;
// . . . o ther p r i v a t e v a r i a b l e s and methods

} ;
Listing 1.3. Generic interface for the Wave simulation algorithm.

Initially, MemSpace is the Memory Space that is defined as type-trait from
the provided template parameter ExecSpace. The member variables Pnew, P,
etc. that store wavefields as well the velocity model V are represented by the
generic container ScalarField, which is defined based on the template pa-
rameter MemSpace. The algorithm’s steps are ordered in the body of the main
function, namely run(), which invokes the routines that compose it, namely,
1) add source, 2) fd pzz, 3) fd pxx, and 4) fd time. The algorithm as a meta-
program is completely agnostic with respect to any target hardware because
both the location of the data as well the implementation details are resolved by
the template parameters MemSpace and ExecSpace respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Arithmetic Intensity

0

200

400

600

800

1000

GF
LO

PS
/s

Arch:
V100
MI100
CPU

Kernel:
fd_pzz
fd_pxx
fd_time

Kernel:
fd_pzz
fd_pxx
fd_time

Fig. 4. Roofline-model analysis of individual kernels on CPU and GPU architectures.

Since the implementation details can be developed with any programming
model, language, or library of choice we can use a suitable tool for each ar-
chitecture we target. We use OpenMP for threaded parallelism on CPUs, CUDA
for Nvidia GPUs, and HIP for porting CUDA-kernels to AMD GPUs. In Fig-
ure 4, we demonstrate by roofline model analysis that we achieve near optimal
performance in all kernels8 of interest. The architectures that we used for this
experiment are: Nvidia Tesla V100 GPU, AMD MI100 GPU, and Intel Xeon
Gold 6248 CPU. For each case, the practical main-memory bandwidth is mea-
sured using the open-source BabelStream benchmark [5], and plotted on the
figure with a different colour. The curve with the highest slope has the highest
memory throughput, which in that case is the AMD MI100 GPU. Based on the
arithmetic intensity (Flops/Byte), and the achieved performance (GFlops/s),
each kernel is marked on the plot. The colour indicates architecture and the

8 the add source kernels has no parallelism to exploit, thus, it is neglected.

An approach to performance portability through generic programming 11

symbol indicates the kernel-name. The evaluation shows that all kernels, except
from fd pzz on the MI100 GPU, achieve higher than 90 % efficiency.

8 Discussion

This design approach is powerful because the generic behaviour can be devel-
oped without any dependency on external libraries. A C++11 or above com-
pliant compiler is all that is needed. The implementation details that provide
the architecture-specific libraries or programming models are needed partially
depending on the target hardware. Extensibility is one of the virtues of the de-
scribed design approach because targeting new hardware becomes a well defined
procedure. The first step is to develop the Memory Space that provides the re-
source management operations. The, second is to develop the Execution Space
that is used for tag-dispatching. Once these two classes are developed the back-
end for each routine can be implemented in isolation from the others based on
two requirements: 1) adhere to the interface, and 2) pass the generic unit-test
that is already in place. This strategy allows to implement back-end for a new
hardware, e.g. FPGA, or even specialize for specific instruction sets, e.g. AVX,
SVE, etc. Furthermore, we argue that productivity does not necessarily come
only with the ability to develop code faster. It comes with good separation of
concerns so that processes are dissected in small, well defined, understandable
pieces that can be developed independently. If a software design is in place and it
is understood from the people who develop the different back-ends, productivity
is achieved in the most effective way. This work aligns towards this direction. Fi-
nally, the discussed design approach is used for the development of preparatory
access software within the Delphi Consortium for applications related to seismic
wavefield modelling, imaging, and inversion. Similar design approaches were suc-
cessfully applied in the area of Sparse Linear Algebra through the development
of Morpheus[14], a library for dynamic sparse matrices and algorithms.

9 Conclusions

In this work, we describe a design approach that allows the development of
maintainable scientific software for heterogeneous computing architectures. The
design is based on the abstract machine model that represents accurately the ma-
jority of HPC systems nowadays. The approach is based on meta-programming
techniques using C++ templates, which are used for the development of generic
containers, routines and algorithms that serve as building-blocks for the develop-
ment of performance-portable applications. We identify two concepts necessary
for developing the generic building-blocks, the first, is the Memory Space that
defines the location of the data, and the second is the Execution Space that
distinguishes the implementation details. Our approach allows the integration of
any programming model of choice as a back-end that provides the implementa-
tion details of the generic high-level application. A FD scheme is developed as

12 Hadjigeorgiou A. et al.

proof of concept, and benchmarked using roofline model analysis to demonstrate
at least 90 % performance efficiency on modern CPUs and GPUs.

Acknowledgment

This research is funded by Delphi Consortium at Delft University of Technology
and the EPSRC project ASiMoV (EP/S005072/1). The experiments have been
carried out on the Cyclone HPC system at the Cyprus Institute, and the Isam-
bard 2 UK National Tier-2 HPC Service (http://gw4.ac.uk/isambard) operated
by GW4 and the UK Met Office, and funded by EPSRC (EP/T022078/1).

References

1. Ang J. A., et. al.: Abstract Machine Models and Proxy Architectures for Exascale
Computing, Lawrence Berkeley National Laboratory, 2014.

2. Beckingsale D. A. et al.,: RAJA: Portable Performance for Large-Scale Scientific
Applications. In: IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), Denver, CO, USA, 2019.

3. Carter H. et al.,: Kokkos: Enabling manycore performance portability through poly-
morphic memory access patterns. In: Journal of Parallel and Distributed Comput-
ing, Vol. 74, no. 12, pp. 3202-3216, 2014.

4. Deakin T. et al.,: Performance Portability across Diverse Computing Architectures.
In: IEEE/ACM International Workshop on Performance, Portability and Produc-
tivity in HPC (P3HPC), Denver, CO, USA, 2019.

5. Deakin T. et al.,: Evaluating attainable memory bandwidth of parallel programming
models via BabelStream. In: International Journal of Computational Science and
Engineering. Special issue. Vol. 17, No. 3, pp. 247–262, 2018.

6. Hasselbring W.: Software Architecture: Past, Present, Future. In: Gruhn V. Striemer
R. (eds) The Essence of Software Engineering, Springer, pp. 169-184, 2018.

7. Iglberger K.: C++ Software Design: Design Principles and Patterns for High-Quality
Software, O’Reilly Media, Inc., 1005, 2022.

8. Johanson N. A.: Software Engineering for Computational Science: Past, Present,
Future. In: Computing in Science and Engineering, vol. 20, pp. 90-109, 2018.

9. Lilis Y. and Savidis A: A Survey of Metaprogramming Languages. In: ACM Com-
puting Surveys, vol. 52, no. 6, pp. 1-39, 2019.

10. Prabhu P. et al.,: A survey of the practice of computational science. In: Association
for Computing Machinery, New York, NY, USA, Article 19, 1–12, 2011.

11. Rompf T. et al.,: Go Meta! A case for Generative Programming and DSLs in Per-
formance Critical Systems. In: 1st Summit on Advances in Programming Languages
(SNAPL 2015), Asilomar, CA, USA, May 3-6, 2015.

12. Stroustrup B.: The C++ Programming Language, Fourth Edition, ch. 17, pp. 481-
526, Addison-Wesley, 2013.

13. Unat D. et al.,: Trends in Data Locality Abstractions for HPC Systems. In: IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp. 3007-3020, 1
Oct. 2017.

14. C. Stylianou and M. Weiland,: Exploiting dynamic sparse matrices for performance
portable linear algebra operations. In 2022 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC). Los Alamitos, CA,
USA: IEEE Computer Society, Nov 2022, pp. 47–57.

http://gw4.ac.uk/isambard

	An approach to performance portability through generic programming

