Skip to main content

Boosting the Performance of Object Tracking with a Half-Precision Particle Filter on GPU

  • Conference paper
  • First Online:
Euro-Par 2023: Parallel Processing Workshops (Euro-Par 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14351))

Included in the following conference series:

  • 291 Accesses

Abstract

High-performance GPU-accelerated particle filter methods are critical for object detection applications, ranging from autonomous driving, robot localization, to time-series prediction. In this work, we investigate the design, development and optimization of particle-filter using half-precision on CUDA cores and compare their performance and accuracy with single- and double-precision baselines on Nvidia V100, A100, A40 and T4 GPUs. To mitigate numerical instability and precision losses, we introduce algorithmic changes in the particle filters. Using half-precision leads to a performance improvement of 1.5–2 \(\times \) and 2.5–4.6 \(\times \) with respect to single- and double-precision baselines respectively, at the cost of a relatively small loss of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009 IEEE International Symposium on Workload Characterization, pp. 44–54. IEEE (2009)

    Google Scholar 

  2. Chitchian, M., van Amesfoort, A.S., Simonetto, A., Keviczky, T., Sips, H.J.: Adapting particle filter algorithms to many-core architectures. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, pp. 427–438. IEEE (2013)

    Google Scholar 

  3. Goodrum, M.A., Trotter, M.J., Aksel, A., Acton, S.T., Skadron, K.: Parallelization of particle filter algorithms. In: Varbanescu, A.L., Molnos, A., van Nieuwpoort, R. (eds.) ISCA 2010. LNCS, vol. 6161, pp. 139–149. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24322-6_12

    Chapter  Google Scholar 

  4. Gordon, N.J., Salmond, D.J., Smith, A.F.: Novel approach to nonlinear/non-gaussian Bayesian state estimation. In: IEE Proceedings F (radar and signal processing), vol. 140, pp. 107–113. IET (1993)

    Google Scholar 

  5. Haidar, A., Tomov, S., Dongarra, J., Higham, N.J.: Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers. In: Supercomputing 18, pp. 603–613. IEEE (2018)

    Google Scholar 

  6. Harris, M.: Mixed-precision programming with CUDA 8 (2016). https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/

  7. Harris, M.: Optimizing parallel reduction in CUDA (2017). https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

  8. Hendeby, G., Karlsson, R., Gustafsson, F.: Particle Filtering: the need for speed. EURASIP J. Adv. Signal Process. 2010, 1–9 (2010)

    Article  Google Scholar 

  9. Ho, N.M., Wong, W.F.: Exploiting half precision arithmetic in NVIDIA GPUs. In: 2017 IEEE HPEC,. pp. 1–7. IEEE (2017)

    Google Scholar 

  10. Hsiao, K., Miller, J., de Plinval-Salgues, H.: Particle filters and their applications. Cogn. Robot. 4 (2005)

    Google Scholar 

  11. Jaward, M., Mihaylova, L., Canagarajah, N., Bull, D.: Multiple object tracking using particle filters. In: 2006 IEEE Aerospace Conference, p. 8. IEEE (2006)

    Google Scholar 

  12. Li, T., Bolic, M., Djuric, P.M.: Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process. Mag. 32(3), 70–86 (2015)

    Article  Google Scholar 

  13. Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.: Nvidia tensor core programmability, performance & precision. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 522–531. IEEE (2018)

    Google Scholar 

  14. Murray, L.M., Lee, A., Jacob, P.E.: Parallel resampling in the particle filter. J. Comput. Graph. Stat. 25(3), 789–805 (2016)

    Article  MathSciNet  Google Scholar 

  15. Nguyen, H.: GPU Gems 3. Addison-Wesley Professional (2007)

    Google Scholar 

  16. Nicely, M.A., Wells, B.E.: Improved parallel resampling methods for particle filtering. IEEE Access 7, 47593–47604 (2019). https://doi.org/10.1109/ACCESS.2019.2910163

    Article  Google Scholar 

  17. Schön, T.B.: Solving nonlinear state estimation problems using particle filters-an engineering perspective. Linköping University, Linköping, Department of Automatic Control (2010)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Sweden, Finland, Germany, Greece, France, Slovenia, Spain, and the Czech Republic under grant agreement No 101093261. The computations were enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) at KTH, partially funded by the Swedish Research Council through grant agreement no. 2022-06725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabin Schieffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schieffer, G., Pornthisan, N., Medeiros, D., Markidis, S., Wahlgren, J., Peng, I. (2024). Boosting the Performance of Object Tracking with a Half-Precision Particle Filter on GPU. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 2023. Lecture Notes in Computer Science, vol 14351. Springer, Cham. https://doi.org/10.1007/978-3-031-50684-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50684-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50683-3

  • Online ISBN: 978-3-031-50684-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics