Skip to main content

Latency-Aware Placement of Stream Processing Operators

  • Conference paper
  • First Online:
Euro-Par 2023: Parallel Processing Workshops (Euro-Par 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14351))

Included in the following conference series:

  • 303 Accesses

Abstract

The rise of the Internet of Things and Fog computing has increased substantially the number of interconnected devices at the edge of the network. As a result, a large amount of computations is now performed in the fog generating vast amounts of data. To process this data in near real time, stream processing is typically employed due to its efficiency in handling continuous streams of information in a scalable manner. However, most stream processing approaches do not consider the underlying network devices as candidate resources for processing data. Moreover, many existing works do not take into account the incurred network latency of performing computations on multiple devices in a distributed way. Consequently, the fog computing resources may not be fully exploited by existing stream processing approaches. To avoid this, we formulate an optimization problem for utilizing the existing fog resources, and we design heuristics for solving this problem efficiently. Furthermore, we integrate our heuristics into Apache Storm, and we perform experiments that show latency-related benefits compared to alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apache software foundation: apache storm documentation: resource aware scheduler. https://storm.apache.org/releases/2.4.0/Resource_Aware_Scheduler_overview.html#Enhancements-on-original-DefaultResourceAwareStrategy (2022). Accessed 31 Mar 2022

  2. Apache software foundation: apache storm documentation: scheduler. https://storm.apache.org/releases/2.4.0/Storm-Scheduler.html (2022). Accessed 31 Mar 2022

  3. de Assunção, M.D., Veith, A.D.S., Buyya, R.: Distributed data stream processing and edge computing: a survey on resource elasticity and future directions. Netw. Comput. Appl. 103, 1–17 (2018)

    Article  Google Scholar 

  4. Axenie, C., Tudoran, R., Bortoli, S., Hassan, M.A.H., Sánchez, C.S., Brasche, G.: Dimensionality reduction for low-latency high-throughput fraud detection on datastreams. In: 18th IEEE International Conference On Machine Learning And Applications, pp. 1170–1177. IEEE (2019)

    Google Scholar 

  5. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: Distributed QoS-aware scheduling in storm. In: 9th ACM International Conference on Distributed Event-Based Systems, pp. 344–347. ACM (2015)

    Google Scholar 

  6. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: On QoS-aware scheduling of data stream applications over fog computing infrastructures. In: 2015 IEEE Symposium on Computers and Communication, pp. 271–276. IEEE (2015)

    Google Scholar 

  7. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  8. Eskandari, L., Huang, Z., Eyers, D.M.: P-Scheduler: adaptive hierarchical scheduling in apache storm. In: Australasian Computer Science Week Multiconference, p. 26. ACM (2016)

    Google Scholar 

  9. Hasenburg, J., Grambow, M., Bermbach, D.: Mockfog 2.0: automated execution of fog application experiments in the cloud. IEEE Trans. Cloud Comput. 11(01), 58–70 (2021)

    Google Scholar 

  10. d Hasenburg, J., Grambow, M., Grünewald, E., Huk, S., Bermbach, D.: MockFog: emulating fog computing infrastructure in the cloud. In: IEEE International Conference on Fog Computing, pp. 144–152. IEEE (2019)

    Google Scholar 

  11. Hiessl, T., Karagiannis, V., Hochreiner, C., Schulte, S., Nardelli, M.: Optimal placement of stream processing operators in the fog. In: 3rd IEEE International Conference on Fog and Edge Computing, pp. 1–10. IEEE (2019)

    Google Scholar 

  12. IEEE: IEEE Standard 1934–2018 for adoption of OpenFog reference architecture for fog computing (2018)

    Google Scholar 

  13. Karagiannis, V., Frangoudis, P.A., Dustdar, S., Schulte, S.: Context-aware routing in fog computing systems. IEEE Trans. Cloud Comput. 11(01), 532–549 (2021)

    Article  Google Scholar 

  14. Kobourov, S.G.: Spring embedders and force directed graph drawing algorithms. CoRR abs/1201.3011 (2012)

    Google Scholar 

  15. Mayer, R., Graser, L., Gupta, H., Saurez, E., Ramachandran, U.: EmuFog: extensible and scalable emulation of large-scale fog computing infrastructures. In: IEEE Fog World Congress, pp. 1–6. IEEE (2017)

    Google Scholar 

  16. Nardelli, M., Cardellini, V., Grassi, V., Presti, F.L.: Efficient operator placement for distributed data stream processing applications. IEEE Trans. Parallel Distrib. Syst. 30(8), 1753–1767 (2019)

    Article  Google Scholar 

  17. Peng, B., Hosseini, M., Hong, Z., Farivar, R., Campbell, R.H.: R-Storm: resource-aware scheduling in storm. In: 16th Annual Middleware Conference, pp. 149–161. ACM (2015)

    Google Scholar 

  18. Pietzuch, P.R., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.I.: Network-aware operator placement for stream-processing systems. In: 22nd International Conference on Data Engineering, p. 49. IEEE (2006)

    Google Scholar 

  19. Prosperi, L., Costan, A., Silva, P., Antoniu, G.: Planner: Cost-efficient execution plans placement for uniform stream analytics on edge and cloud. In: 2nd IEEE/ACM Workflows in Support of Large-Scale Science, pp. 42–51. IEEE (2018)

    Google Scholar 

  20. Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards QoS-aware fog service placement. In: IEEE International Conference on Fog and Edge Computing, pp. 89–96. IEEE (2017)

    Google Scholar 

  21. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Futur. Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  Google Scholar 

  22. Szymaniak, M., Presotto, D.L., Pierre, G., van Steen, M.: Practical large-scale latency estimation. Comput. Netw. 52(7), 1343–1364 (2008)

    Article  Google Scholar 

  23. Tsai, C., Rodrigues, J.J.P.C.: Metaheuristic scheduling for cloud: a survey. IEEE Syst. J. 8(1), 279–291 (2014)

    Article  Google Scholar 

  24. Varshney, P., Simmhan, Y.: Characterizing application scheduling on edge, fog and cloud computing resources. Softw. Pract. Experience 50(5), 558–595 (2020)

    Article  Google Scholar 

  25. Yousefpour, A., et al.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development as well as the Christian Doppler Research Association is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Karagiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ecker, R., Karagiannis, V., Sober, M., Ebrahimi, E., Schulte, S. (2024). Latency-Aware Placement of Stream Processing Operators. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 2023. Lecture Notes in Computer Science, vol 14351. Springer, Cham. https://doi.org/10.1007/978-3-031-50684-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50684-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50683-3

  • Online ISBN: 978-3-031-50684-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics