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Abstract. In this paper, we propose two-sorted modal logics for the
representation and reasoning of concepts arising from rough set theory
(RST) and formal concept analysis (FCA). These logics are interpreted
in two-sorted bidirectional frames, which are essentially formal contexts
with converse relations. On one hand, the logic KB contains ordinary
necessity and possibility modalities and can represent rough set-based
concepts. On the other hand, the logic KF has window modality that
can represent formal concepts. We study the relationship between KB

and KF by proving a correspondence theorem. It is then shown that,
using the formulae with modal operators in KB and KF, we can capture
formal concepts based on RST and FCA and their lattice structures.

Keywords: Modal logic · Formal concept analysis · Rough set theory.

1 Introduction

Rough set theory (RST) [13] and formal concept analysis (FCA) [16] are both
well-established areas of study with a variety of applications in fields like knowl-
edge representation and data analysis. There has been a great deal of research
on the intersections of RST and FCA over the years, including those by Kent
[10], Saquer et al [14], Hu et al [9], Düntsch and Gediga [3], Yao [19], Yao et al
[20], Meschke [12] , and Ganter et al [4].

Central notions in FCA are formal contexts and their associated concept
lattices. A formal context (or simply context) is a triple K := (G,M, I) where
I ⊆ G×M . A given context induces two maps + : (P(G),⊆) → (P(M),⊇) and
− : (P(M),⊇) → (P(G),⊆), where for all A ∈ P(G) and B ∈ P(M):

A+ = {m ∈M | for all g ∈ A gIm},

B− = {g ∈ G | for all m ∈ B gIm}.

A pair of set (A,B) is called a formal concept (or simply concept) if A+ = B
and A = B−. The set FC of all concepts forms a complete lattice and is called
a concept lattice.

⋆ This work is partially supported by National Science and Technology Council
(NSTC) of Taiwan under Grant No. 110-2221-E-001-022-MY3
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On the other hand, the basic construct of the original RST is the Pawlakian
approximation space (W,E), where W is the universe and E is an equivalence
relation on W . Then, by applying notions of modal logic to RST, Yao et al [21]
proposed generalised approximation space (W,E) with E being any binary rela-
tion onW . In addition, they also suggested to use a binary relation between two
universes of discourse, containing objects and properties respectively, as another
generalised formulation of approximation spaces. The rough set model over two
universes is thus a formal context in FCA. Düntsch et al. [3] defined sufficiency,
dual sufficiency, possibility and necessity operators based on a rough set model
over two universes, where necessity and possibility operators are, in fact, rough
set approximation operators. Based on these operators, Düntsch et al. [3] and
Yao [19] introduced property oriented concepts and object oriented concepts
respectively.

For a context K := (G,M, I), I(x) := {y ∈M : xIy} and I−1(y) := {x ∈ G :
xIy} are the I-neighborhood and I−1-neighbourhood of x and y respectively.
For A ⊆ G, and B ⊆ M , the pairs of dual approximation operators are defined
as:

B♦−1

I := {x ∈ G : I(x) ∩B 6= ∅}, B�−1

I := {x ∈ G : I(x) ⊆ B}.

A♦
I−1 := {y ∈M : I−1(y) ∩ A 6= ∅}, A�

I−1 := {y ∈M : I−1(y) ⊆ A}.
If there is no confusion about the relation involved, we shall omit the subscript

and denote B♦−1

I by B♦−1

, B�−1

I by B�−1

and similarly for the case of A. A pair

(A,B) is a property oriented concept of K iff A♦ = B and B�−1

= A; and it is an

object oriented concept of K iff A� = B and B♦−1

= A. As in the case of FCA,
the set OC of all object oriented concepts and the set PC of all property oriented
concepts form complete lattices, which are called object oriented concept lattice
and property oriented concept lattice respectively.

For any concept (A,B), the set A is called its extent and B is called its
intent. For concept lattices X = FC,PC,OC, the set of all extents and intents
of X are denoted by Xext and Xint, respectively.

Proposition 1. For a context K := (G,M, I), the following holds.

(a) FCext = {A ⊆ G | A+− = A} and FCint = {B ⊆M | B−+ = B}.

(b) PCext = {A ⊆ G | A♦�−1

= A} and PCint = {B ⊆M | B�−1♦ = B}.

(c) OCext = {A ⊆ G | A�♦−1

= A} and OCint = {B ⊆M | B♦−1� = B}.

It can be shown that the sets FCext,PCext and OCext form complete lattices
and are isomorphic to the corresponding concept lattices. Analogously, the sets
FCint,PCint and OCint form complete lattices and are dually isomorphic to
the corresponding concept lattices. Therefore, a concept can be identify with
its extent or intent. The relationship between these two kinds of rough concept
lattices and concept lattices of FCA are investigated in [18]. In particular, the
following theorem is proved.

Theorem 1. [18] For a context K = (G,M, I) and the complemented context
Kc = (G,M, Ic), the following holds.
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(a) The concept lattice of K is isomorphic to the property oriented concept
lattice of Kc.

(b) The property oriented concept lattice of K is dually isomorphic to the object
oriented concept lattice of K.

(c) The concept lattice of K is dually isomorphic to the object oriented concept
lattice of Kc.

In addition, to deal with the negation of concept, the notions of semiconcepts
and protoconcepts are introduced in [17]. Algebraic studies of these notions led
to the definition of double Boolean algebras and pure double Boolean algebras
[17]. These structures have been investigated by many authors [17,15,1,8]. There
is also study of logic corresponding to these algebraic structures [6,7].

The operators used in formal and rough concepts correspond to modalities
used in modal logic [5,2]. In particular, the operator used in FCA is the window
modality (sufficiency operator) [5] and those used in RST are box (necessity
operator) and diamond (possibility operator) [2]. Furthermore, a context is a two-
sorted structure consisting of a set of objects and a set of properties. Considering
these facts, our goal in this work is to formulate two-sorted modal logics that are
sound and complete with respect to the class of all contexts and can represent
all the three kinds of concepts and their lattices.

To achieve the goal, we first introduce the notion of two-sorted bidirectional
frame, which is simply a formal context extended with the converse of the binary
relation. Then, we propose two-sorted modal logics KB and KF as represen-
tation formalism for rough and formal concepts respectively, and two-sorted
bidirectional frames serve as semantic models of the logics. We also prove the
soundness and completeness of the proposed logics with respect to the semantic
models.

Next, we will review basic definitions and main results of general many-
sorted polyadic modal logic. Then, in Section 2.1, we define the logic KB and
characterize the pairs of formula that represent property and object oriented
concepts of context. The logic KF and formal concept are discussed in Section
2.2. We revisit the three concept lattices and their relations in terms of logic
in Section 3. Finally, we summarize the paper and indicate directions of future
work in Section 4.

1.1 Many-sorted polyadic modal logic

The many-sorted polyadic modal logic is introduced in [11]. The alphabet of
the logic consists of a many-sorted signature (S,Σ), where S is the collection of
sorts and Σ is the set of modalities, and an S-indexed family P := {Ps}s∈S of
propositional variables, where Ps 6= ∅ and Ps ∩Pt = ∅ for distinct s, t ∈ S. Each
modality σ ∈ Σ is associated with an arity s1s2 . . . sn → s. For any n ∈ N, we
denote Σs1s2...sns = {σ ∈ Σ | σ : s1s2 . . . sn → s}

For an (S,Σ)-modal language MLS , the set of formulas is an S-index family
FmS := {Fms | s ∈ S}, defined inductively for each s ∈ S by

φs ::= ps | ¬φs | φs ∧ φs | σ(φs1 . . . φsn) | σ�(φs1 . . . φsn),
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where ps ∈ Ps and σ ∈ Σs1s2...sns.
A many-sorted relational frame is a pair F := ({Ws}s∈S , {Rσ}σ∈Σ) where

Ws 6= ∅, Wsi ∩ Wsj = ∅ for s, si 6= sj ∈ S and Rσ ⊆ Ws ×Ws1 . . . ×Wsn if
σ ∈ Σs1s2...s. The class of all many-sorted relational frames is denoted as SRF.
A valuation v is an S-indexed family of maps {vs}s∈S , where vs : Ps → P(Ws).
A many-sorted model M := (F, v) consists of a many-sorted frame F and a
valuation v. The satisfaction of a formula in a model M is defined inductively
as follows.

Definition 1. Let M := ({Ws}s∈S , {Rσ}σ∈Σ, v) be a many-sorted model, w ∈
Ws and φ ∈ Fms for s ∈ S. We define M, w |=s φ by induction over φ as follows:

1. M, w |=s p iff w ∈ vs(p)
2. M, w |=s ¬φ iff M, w 6|=s φ
3. M, w |=s φ1 ∧ φ2 iff M, w |=s φ1 and M, w |=s φ2
4. If σ ∈ Σs1s2...s, then M, w |=s σ(φ1, φ2 . . . φn) iff there is (w1, w2 . . . wn) ∈
Ws1 ×Ws2 . . .Wsn such that (w,w1, w2 . . . wn) ∈ Rσ and M, wi |=si φi for
i ∈ {1, 2 . . . n}

Definition 2. [11] Let M be an (S,Σ)-model. Then, for a set Φs of formula,
M, w |=s Φs if M, w |=s φ for all φ ∈ Φs.

Let C be a class of models. Then, for a set Φs ∪ {φ} ⊆ Fms, φ is a local
semantic consequence of Φs over C and denoted as Φs |=C

s φ if M, w |=s Φs

implies M, w |=s φ for all models M ∈ C. If C is the class of all models, we omit
the superscript and denote it as Φs |=s φ.

If Φs is empty, we say φ is valid in C and denoted it as C |=s φ. When C is
the class of all models based on a given frame F, we also denote it by F |=s φ.

To characterize the local semantic consequence, the modal system K(S,Σ) :=
{Ks}s∈S is proposed in [11], where Ks is the axiomatic system in Figure 1 in
which σ ∈ Σs1...sn,s:

When the signature is clear from the context, the subscripts may be omitted
and we simply write the system as K.

Definition 3. [11] Let Λ ⊆ FmS be an S-sorted set of formulas. The normal
modal logic defined by Λ is KΛ := {KΛs}s∈S where KΛs := Ks∪{λ′ ∈ Fms | λ′

is obtained by uniform substitution applied to a formula λ ∈ Λs}.

Definition 4. [11] A sequence of formulas φ1, φ2, . . . φn is called a KΛ-proof for
the formula φ if φn = φ and φi is in KΛsi or inferred from φ1, . . . , φi−1 using
modus pones and universal generalization. If φ has a proof in KΛ, we say that φ
is a theorem and write ⊢KΛ

s φ. Let Φ∪{φ} ⊆ Fms be a set of formulas. Then, we
say that φ is provable form Φ, denoted by Φ ⊢KΛ

s φ, if there exist φ1, . . . , φn ∈ Φ
such that ⊢KΛ

s (φ1 ∧ . . . ∧ φn) → φ. In addition, the set Φ is KΛ-inconsistent if
⊥ is provable from it, otherwise it is KΛ-consistent.

Proposition 2. [11] KΛ is strongly complete with respect to a class of models
C if and only if any consistent set Γ of formulas is satisfied in some model from
C.
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1. Axioms
(a) (PL): All propositional tautologies of sort s.
(b) (Ki

σ): σ
�(φs1

, . . . φsi
→ ψsi

, . . . φsn) →
((σ�(φs1

, . . . φsi
, . . . φsn) → σ�(φs1

, . . . ψsi
, . . . φsn))

(c) (Dualσ): σ(φs1
, . . . φsn) ↔ ¬σ�(¬φs1, . . . ,¬φsn)

2. Inference rules:
(a) (MP)s:

φs, φs → ψs

ψs

(b) (UGi

σ):
φsi

σ�(φs1
, . . . φsi

, . . . φsn)

Fig. 1. The axiomatic system Ks

Definition 5. [11] The canonical model is

MKΛ := ({WKΛ
s }s∈S, {R

KΛ
σ }σ∈Σ , V

KΛ)

where

(a) for any s ∈ S, WKΛ
s = {Φ ⊆ Fms | Φ is maximally KΛ-consistent},

(b) for any σ ∈ Σs1...sn,s, w ∈ WKΛ
s , u1 ∈ WKΛ

s1
, . . . un ∈ WKΛ

sn
, RKΛ

σ wu1 . . . un
if and only if (ψ1, . . . , ψn) ∈ u1×u2×. . .×un implies that σ(ψ1, . . . , ψn) ∈ w.

(c) V KΛ = {V KΛ
s } is the valuation defined by V KΛ

s (p) = {w ∈ WKΛ
s | p ∈ w}

for any s ∈ S and p ∈ Ps.

Lemma 1. [11] If s ∈ S, φ ∈ Fms, σ ∈ Σs1...sn,s and w ∈ WKΛ
s then the

following hold:

(a) RKΛ
σ wu1 . . . un if and only if for any formulas ψ1, . . . , ψn, σ

�(ψ1, . . . , ψn) ∈ w
implies ψi ∈ ui for some i ∈ {1, 2, . . . , n}.

(b) If σ(ψ1, . . . , ψn) ∈ w then for any i ∈ {1, 2 . . . , n} there is ui ∈ WKΛ
si

such
that ψ1 ∈ u1, . . . , ψn ∈ un and RKΛ

σ wu1 . . . un.

(c) MKΛ, w |=s φ if and only if φ ∈ w.

Proposition 3. [11] If Φs is a KΛ-consistent set of formulas then it is satisfied
in the canonical model.

These results implies the soundness and completeness of K directly.

Theorem 2. K is sound and strongly complete with respect to the class of all
(S,Σ)-models, that is, for any s ∈ S, φ ∈ Fms and Φs ⊆ Fms, Φs ⊢K

s φ if and
only if Φs |=s φ.
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2 Two-sorted modal logic and concept lattices

In this section, we present the logics KB and KF and discuss their relationship
with rough and formal concepts.

2.1 Two-sorted modal logic and concept lattices in rough set theory

Let us consider a special kind of two-sorted signature ({s1, s2}, Σ) where Σ =
Σ1 ⊎Σ2 is the direct sum of two sets of unary modalities such that Σ1 = Σs1s2

and Σ2 = Σs2s1 = Σ−1
1 := {σ−1 : σ ∈ Σ1}. We say that the signature is

bidirectional. Modal languages built over bidirectional signatures are interpreted
in bidirectional frames.

Definition 6. For the signature above, a two-sorted bidirectional frame is a
quadruple :

F2 := (W1,W2, {Rσ}σ∈Σ1
, {Rσ−1}σ∈Σ1

)

where W1,W2 are non-empty disjoint sets and Rσ ⊆ W2 × W1, Rσ−1 is the
converse of Rσ. The class of all two-sorted bidirectional frame is denoted as
BSFR2.

The logic system KB for two-sorted bidirectional frames is define as KΛ
where Λ consists of the following axioms:

(B) p→ (σ−1)�σp and q → σ�σ−1q where p ∈ Ps1 and q ∈ Ps2 .

Theorem 3. KB is sound with respect to class BSFR2 of all two-sorted bidi-
rectional frame.

Proof. The proof is straightforward. Here we give the proof for the axiom p →
(σ−1)�σp. LetM be a model based on the frame F2 defined above andM, w1 |=s1

p for some w1 ∈ W1. Now, for any w2 ∈ W2 such that Rσ−1w1w2, we have
M, w2 |=s2 σp because Rσw2w1 follows from the converse of relation. This leads
to M, w1 |=s1 (σ−1)�σp immediately.

The completeness theorem is proved using the canonical model of KB, which
is an instance of that constructed in Definition 5. Hence,

MKB := ({WKB

s1
,WKB

s2
}, {RKB

σ , RKB

σ−1}σ∈Σ , V
KB)

It is easy to see that the model satisfies the following properties for x ∈ WKB

s1

and y ∈ WKB

s2
:

(a) RKB

σ yx iff φ ∈ x implies that σφ ∈ y for any φ ∈ Fms1 .
(b) RKB

σ−1xy iff φ ∈ y implies that σ−1φ ∈ x for any φ ∈ Fms2 .

Theorem 4. KB is strongly complete with respect to class of all two-sorted
bidirectional models, that is for any s ∈ {s1, s2}, φ ∈ Fms and Φs ⊆ Fms,
Φs |=BSFR2

s φ implies that Φs ⊢KB

s φ.



Two-sorted Modal Logic for Formal and Rough Concepts 7

Proof. It is sufficient to show that the canonical model is a bidirectional frame.
Then, the result follows from Propositions 2 and 3. Let x ∈WKB

s1
and y ∈WKB

s2

and assume (y, x) ∈ RKB

σ . Then, for any φ ∈ y, we have σ�σ−1φ ∈ y by axiom
(B), which in turns implies σ−1φ ∈ x by Lemma 1. Hence, (x, y) ∈ RKB

σ−1 by
property (b) of the canonical model. Analogously, we can show that (x, y) ∈ RKB

σ−1

implies (y, x) ∈ RKB

σ . That is, RKB

σ−1 is indeed the converse of RKB

σ .

To represent rough concepts, we consider a particular bidirectional signa-
ture ({s1, s2}, {♦,♦−1}) (i.e. the signature that Σ1 is a singleton containing the
modality ♦). As usual, we denote the dual modalities of ♦ and ♦−1 by � and
�−1 respectively. Let SF2 denote the class of all bidirectional frames over the
signature and let K be the set of all contexts. Then, there is a bijective corre-
spondence between K and SF2 given by (G,M, I) 7→ (G,M, I−1, I). Note that
I−1 and I respectively correspond to modalities ♦ and ♦−1 under the mapping.
We use Fm(RS) := {Fm(RS)s1 , Fm(RS)s2} and KB2 to denote the indexed
family of formulas and its logic system over the particular signature respectively.
By Theorems 3 and 4, KB2 is sound and complete with respect to the class SF2

and hence K.
Let us denote the truth set of a formula φ ∈ Fm(RS)si(i = 1, 2) in a model

M by [[φ]]M := {w ∈ Wi | M, w |=si φ}. We usually omit the subscript and
simply write [[φ]].

Proposition 4. Let K := (G,M, I) be a context and M := (G,M, I−1, I, v)
be a model based on its corresponding frame. Then, the relationship between
approximation operators and modal formulas is as follows:

(i) [[φ]]♦ = [[♦φ]] and [[φ]]� = [[�φ]] for φ ∈ Fm(RS)s1 .

(ii) [[φ]]♦
−1

= [[♦−1φ]] and [[φ]]�
−1

= [[�−1φ]] for φ ∈ Fm(RS)s2 .

Definition 7. Let C := {(G,M, I−1, I)} be a frame based on the context K =
(G,M, I). Then, we define

(a) FmPCext
:= {φ ∈ Fm(RS)s1 | |=C

s1
�−1♦φ ↔ φ} and FmPCint

:= {φ ∈
Fm(RS)s2 | |=C

s2
♦�−1φ↔ φ}

(b) FmOCext
:= {φ ∈ Fm(RS)s1 | |=C

s1
♦−1�φ ↔ φ} and FmOCint

:= {φ ∈
Fm(RS)s2 | |=C

s2
�♦−1φ↔ φ}

(c) FmPC := {(φ, ψ) | φ ∈ FmPCext
, ψ ∈ FmPCint

, |=C
s1
φ ↔ �−1ψ, |=C

s2
♦φ ↔

ψ}
(d) FmOC := {(φ, ψ) | φ ∈ FmOCext

, ψ ∈ FmOCint
, |=C

s1
φ ↔ ♦−1ψ, |=C

s2
�φ ↔

ψ}

Obviously, when (φ, ψ) ∈ FmPC , ([[φ]], [[ψ]]) ∈ PC for any models based
on C. Hence, FmPC consists of pairs of formulas representing property oriented
concepts. Analogously, FmOC provides the representation of object oriented
concepts. Note that these sets are implicitly parameterized by the underlying
context and should be indexed with K. However, for simplicity, we usually omit
the index.
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2.2 Two sorted modal logic and concept lattice in formal concept

analysis

To represent formal concepts, we consider another two-sorted bidirectional sig-
nature ({s1, s2}, {⊟,⊟−1}}), where Σs1s2 = {⊟} and Σs2s1 = {⊟−1}, and the
logic KF based on it. Syntactically, the signature is the same as that for KB2

except we use different symbols to denote the modalities. Hence, formation rules
of formulas remain unchanged and we denote the indexed family of formulas by
Fm(KF) = {Fm(KF)s1 , Fm(KF)s2}. In addition, while both KF and KB2

are interpreted in bidirectional models, the main difference between them is on
the way of their modalities being interpreted.

Definition 8. Let M := (W1,W2, R,R
−1, v). Then,

(a) For φ ∈ Fm(KF)s1 and w ∈ W2, M, w |=s2 ⊟φ iff for any w′ ∈ W1,
M, w′ |=s1 φ implies R(w,w′)

(b) For φ ∈ Fm(KF)s2 and w ∈ W1, M, w |=s1 ⊟−1φ iff for any w′ ∈ W2,
M, w′ |=s2 φ implies R−1(w,w′)

The logic system KF := {KFs1 ,KFs2} is shown in Figure 2.

1. Axioms:
(PL) Propositional tautologies of sort si for i = 1, 2.
(K1

⊟) ⊟(φ1 ∧ ¬φ2) → (⊟¬φ1 → ⊟¬φ2) for φ1, φ2 ∈ Fm(KF)s1
(B1) φ→ ⊟

−1
⊟ φ for φ ∈ Fm(KF)s1

(K2

⊟−1) ⊟−1(ψ1 ∧ ¬ψ2) → (⊟−1¬ψ1 → ⊟−1¬ψ2) for ψ1, ψ2 ∈
Fm(KF)s2

(B2) ψ → ⊟ ⊟
−1 ψ for ψ ∈ Fm(KF)s2

2. Inference rules:
– (MP )s: for s ∈ {s1, s2} and φ, ψ ∈ Fms

φ, φ→ ψ

ψ

– (UG1

⊟): for φ ∈ Fm(KF)s1 ,

¬φ

⊟φ

– (UG2

⊟−1): for ψ ∈ Fm(KF)s2 ,

¬ψ

⊟
−1ψ

Fig. 2. The axiomatic system KF

We define a translation ρ : Fm(KF) → Fm(RS) where ρ = {ρ1, ρ2} is
defined as follows:
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1. ρi(p) := p for all p ∈ Psi for i = 1, 2.
2. ρi(φ ∧ ψ) := ρi(φ) ∧ ρi(ψ) for φ, ψ ∈ Fm(KF)si , i = 1, 2.
3. ρi(¬φ) := ¬ρi(φ) for φ ∈ Fm(KF)si , i = 1, 2.
4. ρ1(⊟φ) := �¬ρ1(φ) for φ ∈ FmKFs1

.

5. ρ2(⊟
−1φ) := �−1¬ρ2(φ) for φ ∈ FmKFs2

.

Theorem 5. For any formula φ ∈ FmKFsi
(i = 1, 2) the following hold.

(a) Φ ⊢KF φ if and only if ρ(Φ) ⊢KB2 ρ(φ) for any Φ ⊆ FmKFsi
.

(b) Let M := (W1,W2, I, I
−1, v) be a model and Mc := (W1,W2, I

c, (I−1)c, v)
be the corresponding complemented model, w ∈Wi,M, w |=si φ if and only
if Mc, w |=si ρ(φ) for all i = 1, 2.

(c) φ is valid in the class SF2 if and only if ρ(φ) is valid in SF2.

Proof. (a). We can prove it by showing that φ is an axiom in KF if and only if
ρ(φ) is an axiom in KB2, and for each rule in KF, there is a translation of
it in KB2 and vice verse.

(b). By induction on the complexity of formulas, as usual, the proof of basis and
Boolean cases are straightforward. For φ = ⊟ψ, let us assume any w ∈ W2.
Then, by Definition 8, M, w |=s2 ⊟φ iff for all w′ ∈ W1, I

cww′ implies that
M, w′ |=s1 ¬ψ. By induction hypothesis, this means that for all w′ ∈ W1,
Icww′ implies that Mc, w′ |=s1 ¬ρ(ψ). That is, Mc, w |=s2 �¬ρ(φ). By
definition of ρ, this is exactly Mc, w |=s2 ρ(φ). The case of φ = ⊟−1ψ is
proved analogously.

(c). This follows immediately from (b).

Proposition 5. (a). For φ1, φ2 ∈ Fm(KF)s1 ,

φ1 → φ2
⊟φ2 → ⊟φ1

(b). For φ1, φ2 ∈ Fm(KF)s2 ,

φ1 → φ2

⊟−1φ2 → ⊟−1φ1

Proof. We only prove (a) and the proof of (b) is similar.

⊢KFφ1 → φ2

⊢KB2ρ(φ1) → ρ(φ2)(Theorem 5 (a))

⊢KB2(ρ(φ1) → ρ(φ2)) → (¬ρ(φ2) → ¬ρ(φ1))(PL)

⊢KB2¬ρ(φ2) → ¬ρ(φ1)(MP)

⊢KB2�(¬ρ(φ2) → ¬ρ(φ1))(UG)

⊢KB2�(¬ρ(φ2) → ¬ρ(φ1)) → (�¬ρ(φ2) → �¬ρ(φ1))(K)

⊢KB2�¬ρ(φ2) → �¬ρ(φ1)(MP)

⊢KF ⊟ φ2 → ⊟φ1(Theorem 5(a))

Theorem 6. KF is sound and strongly complete with respect to the class SF2.

Proof. This follows from Theorem 5 and the fact thatKB2 is sound and strongly
complete with respect to SF2.
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Proposition 6. Recalling the definition of truth set, we have

(i) [[⊟φ]] = [[φ]]+ for φ ∈ Fm(KF)s1
(ii) [[⊟−1φ]] = [[φ]]− for φ ∈ Fm(KF)s2 .

Definition 9. Let C := {(G,M, I−1, I)} be a frame based on the context (G,M, I).
Then, we define

(a) FmFCext
:= {φ ∈ Fm(KF)s1 | |=C

s1
⊟−1 ⊟ φ ↔ φ} and FmFCint

:= {φ ∈
Fm(KF)s2 | |=C

s2
⊟⊟−1 φ↔ φ}

(b) FmFC := {(φ, ψ) | φ ∈ FmPCext
, ψ ∈ FmPCint

, |=C
s1
φ ↔ ⊟−1ψ, |=C

s2
⊟φ ↔

ψ}

In other words, the set FmFC represents formal concepts induced from the
context (G,M, I).

3 Logical representation of three concept lattices

We have seen that a certain pairs of formulas in the logic KF and KB2 can
represent concepts in FCA and RST respectively. The observation suggests the
definition below.

Definition 10. Let φ ∈ Fm(RS)s1 , ψ ∈ Fm(RS)s2 , η ∈ Fm(KF)s1 , and
γ ∈ Fm(KF)s2 . Then, for a context (G,M, I), we say that

(a) (φ, ψ) is a (logical) property oriented concept of K if (φ, ψ) ∈ FmPC .
(b) (φ, ψ) is a (logical) object oriented concept of K if (φ, ψ) ∈ FmOC .
(c) (η, γ) is a (logical) formal concept of K if (η, γ) ∈ FmFC .

We now explore the relationships between the three notions and their prop-
erties. In what follows, for a context K = (G,M, I), we usually use C0 :=
{(G,M, I−1, I)} and C1 := {(G,M, (Ic)−1), Ic} to denote frames correspond-
ing to K and Kc respectively.

Proposition 7. Let K := (G,M, I) be a context. Then,

(a) (φ, ψ) is a property oriented concept of K iff (¬φ,¬ψ) is an object oriented
concept of Kc for φ ∈ Fm(RS)s1 and ψ ∈ Fm(RS)s2 .

(b) (φ, ψ) is a formal concept of K iff (ρ(φ),¬ρ(ψ)) is a property oriented concept
of Kc for φ ∈ Fm(KF)s1 and ψ ∈ Fm(KF)s2 .

(c) (φ, ψ) is a formal concept of K iff (¬ρ(φ), ρ(ψ)) is an object oriented concept
of Kc for φ ∈ Fm(KF)s1 and ψ ∈ Fm(KF)s2 ..

Proof. (a) Suppose that (φ, ψ) is a property oriented concept of K, then by
definition, |=C0

s1
�−1♦φ ↔ φ, |=C0

s2
♦�−1ψ ↔ ψ, |=C0

s1
φ ↔ �−1ψ, and

|=C0

s2
♦φ↔ ψ. Hence, we have the following derivation,

|=C0

s1
�−1♦φ↔ φ

|=C0

s1
(�−1♦φ↔ φ) ↔ (¬φ↔ ¬�−1♦φ)

|=C0

s1
¬φ↔ ¬�−1♦φ

|=C0

s1
¬φ↔ ♦−1�¬φ
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Therefore, ¬φ ∈ FmPCext
. Similarly, by |=C0

s2
♦�−1ψ ↔ ψ, contraposition

and modus ponens, we can show that ¬ψ ∈ FmPCint
.

Using |=C0

s1
φ ↔ �−1ψ , |=C0

s2
♦φ ↔ ψ, contraposition and modus ponens ,

we can show that (¬φ,¬ψ) ∈ FmOC .
We can also prove the converse direction by replacing φ, ψ, ♦, � with ¬φ,
¬ψ, �, ♦ respectively.

(b) Because (φ, ψ) is a formal concept, we have |=C0

s1
⊟−1 ⊟ φ↔ φ, |=C0

s2
⊟⊟−1

ψ ↔ ψ, |=C0

s1
φ ↔ ⊟−1ψ, and |=C0

s2
⊟φ ↔ ψ. By |=C0

s1
⊟−1 ⊟ φ ↔ φ and

Theorem 5 (a), we have |=C1

s1
ρ(⊟−1 ⊟ φ) ↔ ρ(φ) which implies that |=C1

s1

�−1♦ρ(φ) ↔ ρ(φ). By |=C0

s2
⊟ ⊟−1 ψ ↔ ψ and Theorem 5 (a), we have

|=C1

s2
�¬�−1¬ρ(ψ) ↔ ρ(ψ), which implies that |=C1

s2
♦�−1¬ρ(ψ) ↔ ¬ρ(ψ).

Similarly, we can show that |=C1

s1
ρ(φ) ↔ �−1¬ρ(ψ) , |=C1

s2
♦ρ(φ) ↔ ¬ρ(ψ).

Therefore, (ρ(φ), ρ(ψ)) is a property oriented concept for (G,M, Ic). The
proof for the converse direction is similar.

(c) It follows from (a) and (b) immediately.

Now, we can define a relation≡1 on the set FmPC as follows: For (φ, ψ), (φ′, ψ′) ∈
FmPC , (φ, ψ) ≡1 (φ′, ψ′) if and only if |=C0 φ↔ φ′.

Analogously, we can define ≡2 and ≡3 on the set FmOC and FmFC , respec-
tively. Obviously, ≡1,≡2 and ≡3 are all equivalence relations. Let FmPC/ ≡1

, FmOC/ ≡2, and FmFC/ ≡3 be the sets of equivalence classes.

Proposition 8. For (φ, ψ), (φ′, ψ′) ∈ FmX , (φ, ψ) ≡i (φ
′, ψ′) iff |=C0 ψ ↔ ψ′,

where i ∈ {1, 2, 3} for X ∈ {PC,OC, FC} respectively.

Proof. Let us prove the case of FC as an example. Suppose (φ, ψ), (φ′, ψ′) ∈
FmFC and (φ, ψ) ≡3 (φ′, ψ′). Then, |=C0

s1
φ↔ φ′, which implies |=C0

s2
⊟φ↔ ⊟φ′

according to the semantics of KF. In addition, by definition of FmFC , |=C0

s2

⊟φ↔ ψ, and |=C0

s2
⊟φ′ ↔ ψ′. Hence, |=C0

s2
ψ ↔ ψ′.

Proofs for other two cases are similar.

Proposition 9. LetX ∈ {PCext, OCext, FCext} and Y ∈ {PCint, OCint, FCint}.
Then,

(a) FmX and FmY are closed under conjunction.
(b) If φ ∈ FmX and ψ ∈ FmY , then ◦φ ∈ FmY and ◦−1ψ ∈ FmX , where ◦ ∈

{⊟,�,♦} depending on X and Y according to their respective definitions.

.Proof. (a). We prove the case of FmFCext
as an example and other cases can be

proved in a similar way. Let φ, φ′ ∈ FmFCext
. Then, |=C0

s1
⊟−1 ⊟ φ↔ φ and

|=C0

s1
⊟−1⊟φ′ ↔ φ′. By using the translation ρ and Theorem 5, we have both

|=C0

s1
⊟−1 ⊟ (φ∧φ′) → ⊟−1 ⊟φ and |=C0

s1
⊟−1 ⊟ (φ∧φ′) → ⊟−1 ⊟φ′. Hence,

we can derive |=C0

s1
⊟−1 ⊟ (φ ∧ φ′) → (φ∧ φ′). Also, with the translation, we

have |=C0

s1
(φ ∧ φ′) → ⊟−1 ⊟ (φ ∧ φ′) because the formula is mapped to an

instance of axiom (B). Hence, φ ∧ φ′ ∈ FmFCext
.

(b). Let us prove the case of φ ∈ FmFCext
as an example. Assume that φ ∈

FmFCext
and ◦ = ⊟. Then, according to the semantics of ⊟, |=C0

s1
⊟−1 ⊟

φ ↔ φ implies |=C0

s1
⊟ ⊟−1 ⊟φ ↔ ⊟φ . Hence ⊟φ ∈ FmFCint

. Similarly, if
ψ ∈ FmFCint

, then ⊟−1ψ ∈ FmFCext
.
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From the proposition, we can derive the following corollary immediately.

Corollary 1. (a) (φ1, ψ1), (φ2, ψ2) ∈ FmPC implies that (φ1 ∧ φ2,♦(φ1 ∧ φ2))
and (�−1(ψ1 ∧ ψ2), ψ1 ∧ ψ2) ∈ FmPC .

(b) (φ1, ψ1), (φ2, ψ2) ∈ FmOC implies that (φ1 ∧ φ2,�(φ1 ∧ φ2)) and (♦−1(ψ1 ∧
ψ2), ψ1 ∧ ψ2) ∈ FmOC .

(c) (φ1, ψ1), (φ2, ψ2) ∈ FmFC implies that (φ1 ∧φ2,⊟(φ1 ∧ φ2)) and (⊟−1(ψ1 ∧
ψ2), ψ1 ∧ ψ2) ∈ FmFC .

Now we can define the following structures:
(FmPC/ ≡1,∨1,∧1), where [(φ, ψ)], [(φ′, ψ′)] ∈ FmPC/ ≡1,

[(φ, ψ)] ∧1 [(φ
′, ψ′)] := [(φ ∧ φ′,♦(φ ∧ φ′))]

[(φ, ψ)] ∨1 [(φ
′, ψ′)] := [(�−1(ψ ∧ ψ′), (ψ ∧ ψ′))]

(FmOC/ ≡2,∨2,∧2), where [(φ, ψ)], [(φ′, ψ′)] ∈ FmOC/ ≡2,

[(φ, ψ)] ∧2 [(φ
′, ψ′)] := [(φ ∧ φ′,�(φ ∧ φ′))]

[(φ, ψ)] ∨2 [(φ
′, ψ′)] := [(♦−1(ψ ∧ ψ′), (ψ ∧ ψ′))]

(FmFC/ ≡3,∨3,∧3), where [(φ, ψ)], [(φ′, ψ′)] ∈ FmFC/ ≡3,

[(φ, ψ)] ∧3 [(φ
′, ψ′)] := [(φ ∧ φ′,⊟(φ ∧ φ′))]

[(φ, ψ)] ∨3 [(φ
′, ψ′)] := [(⊟−1(ψ ∧ ψ′), (ψ ∧ ψ′))]

Theorem 7. For a context K, (FmPC/ ≡1,∨1,∧1), (FmOC/ ≡2,∨2,∧2) and
(FmFC/ ≡3,∨3,∧3), are lattices.

Proof. We give proof for the structure (FmFC/ ≡3,∨3,∧3) and the proofs of
other cases are similar. Let (φ, ψ), (φ1, ψ1), (φ

′, ψ′), (φ′1, ψ
′
1) ∈ FmFC such that

(φ, ψ) ≡3 (φ1, ψ1) and (φ′, ψ′) ≡3 (φ′1, ψ
′
1). By Corollary 1, (φ ∧ φ′,⊟(φ ∧

φ′)), (⊟−1(ψ ∧ ψ′), ψ ∧ ψ′), (φ1 ∧ φ
′
1,⊟(φ1 ∧ φ

′
1)) and (⊟−1(ψ1 ∧ ψ

′
1), ψ1 ∧ ψ

′
1) ∈

FmFC . Now (φ, ψ) ≡3 (φ1, ψ1) and (φ′, ψ′) ≡3 (φ′1, ψ
′
1) implies that |=C0 φ↔ φ1

and |=C0 φ′ ↔ φ′1. By Proposition 8, |=C0 ψ ↔ ψ1 and |=C0 ψ′ ↔ ψ′
1. |=

C0

φ∧φ′ ↔ φ1∧φ′1 and |=C0 ψ∧ψ′ ↔ ψ1∧ψ′
1 which implies that (φ∧φ′,⊟(φ∧φ′)) ≡3

(φ1∧φ′1,⊟(φ1∧φ′1)) and (⊟−1(ψ∧ψ′), ψ∧ψ′) ≡3 (⊟−1(ψ1∧ψ′
1), ψ1∧ψ′

1). Hence,
∧3 and ∨3 are well-defined operations. Their commutativity and associativity fol-
low from the fact that ⊢KF φ∧ψ ↔ ψ∧φ and ⊢KF (φ∧ψ)∧γ ↔ φ∧(ψ∧γ). Now
we will show that for all [(φ1, ψ1)], [(φ2, ψ2)] ∈ FmFC/ ≡3, [(φ1, ψ1)]∧([φ1, ψ1]∨
[(φ2, ψ2)]) = [(φ1, ψ1)] which is equivalent to [(φ1∧⊟

−1(ψ1∧ψ2),⊟(φ1∧⊟
−1(ψ1∧

ψ1)))] = [(φ1, ψ1)]. We know that |=C0 φ1 ∧⊟−1(ψ1 ∧ ψ2) → φ1. In addition,

|=C0

s1
φ1 ↔ ⊟−1ψ1 as (φ1, ψ1) ∈ FmFC

|=C0

s2
ψ1 ∧ ψ2 → ψ1

|=C0

s1
⊟−1ψ1 → ⊟−1(ψ1 ∧ ψ2) by Proposition 5

|=C0

s1
φ1 → ⊟−1(ψ1 ∧ ψ2)

|=C0

s1
φ1 → φ1 ∧⊟−1(ψ1 ∧ ψ2)
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So |=C0

s1
φ1 ↔ ⊟−1(ψ1∧ψ2) which implies that [(φ1, ψ1)]∧([φ1 , ψ1]∨[(φ2, ψ2)]) =

[(φ1, ψ1)]. Analogously, we can show that [(φ1, ψ1)] ∨ ([φ1, ψ1] ∧ [(φ2, ψ2)]) =
[(φ1, ψ1)]. Hence (FmFC/ ≡3,∨3,∧3) is a lattice.

Theorem 8. Let K be a context and let Kc be its corresponding complemented
context. Let FmFC be the set of logical formal concepts of K and let FmPC

and FmOC be the sets of logical property oriented concepts and logical object
oriented concepts of Kc respectively. Then,

(a) (FmFC/ ≡3,∨3,∧3) and (FmPC/ ≡1,∨1,∧1) are isomorphic.
(b) (FmPC/ ≡1,∨1,∧1) and (FmOC/ ≡2,∨2,∧2) are dually isomorphic.
(c) (FmFC/ ≡3,∨3,∧3) and (FmOC/ ≡2,∨2,∧2) are dually isomorphic.

Proof. (a) By Proposition 7, the mapping h : FmFC/ ≡3→ FmPC/ ≡1 defined
by h([(φ, ψ)]) := [(ρ(φ), ρ(¬ψ))] is well-defined and surjective. Now h([(φ1, ψ1)]) =
h([(φ2, ψ2)]) implies [ρ((φ1), ρ(¬ψ1))] = [(ρ(φ2), ρ(¬ψ2))], which in turn im-
plies |=C1 ρ(φ1) ↔ ρ(φ2), and by Theorem 5, |=C0 φ1 ↔ φ2. This means that
[(φ1, ψ1)] = [(φ2, ψ2)]. Thus, h is injcetive, and as a result, h is a bijection. In
addition,

h([(φ1, ψ1)] ∧3 [(φ2, ψ2)]) = h([(φ1 ∧ φ2,⊟(φ1 ∧ φ2))])

= ([ρ(φ1 ∧ φ2), ρ(¬ ⊟ (φ1 ∧ φ2))])

= ([ρ(φ1 ∧ φ2),♦ρ(φ1 ∧ φ2)])

= h([(φ1, ψ1)]) ∧1 h([(φ2, ψ2)])

Therefore, h is an isomorphism.
(b) Analogously, we can show that f : FmPC/ ≡1→ FmOC/ ≡1 such that
f([(φ, ψ)]) := [(¬φ,¬ψ)] is a dual isomorphism.
(c) It follows from (a) and (b) immediately.

4 Conclusion and future direction

In this paper, we show that concepts based on RST and FCA can be represented
in two dual instances of two-sorted modal logics KB and KF. An interesting
question is how to deal with both kinds of concepts in a single framework. To
address the question, we apparently need a signature including all modalities
in KB and KF together. For that, the Boolean modal logic proposed in [5]
may be helpful. Hence, to investigate many-sorted Boolean modal logic and its
representational power for concepts based on both RST and FCA will be an
important direction in our future work.

As a formal context consists of objects, properties, and a relation between
them, the relationship between objects and properties can change over time.
Hence, to model and analyze the dynamics of contexts is also desirable. Using
two-sorted bidirectional relational frames, we can model contexts at some time.
Therefore, integrating temporal logic with many-sorted modal logic will provide
an approach to model dynamics of contexts. This is another possible direction
for further research.
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