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Abstract. We are considering the algebraic structure of the Pawlak-
Brouwer-Zadeh lattice to distinguish vagueness due to imprecision from
ambiguity due to coarseness. We show that a general class of many-
valued logics useful for reasoning about data emerges from this context.
All these logics can be obtained from a very general seven-valued logic
which, interestingly enough, corresponds to a reasoning system developed
by Jaina philosophers four centuries BC. In particular, we show how the
celebrated Belnap four-valued logic can be obtained from the very general
seven-valued logic based on the Pawlak-Brouwer-Zadeh lattice.

1 Introduction

The Brouwer-Zadeh lattice [7] was introduced as an algebraic structure to handle
vagueness through representation of each concept X of universe U by pair (A,B),
A,B ⊆ U,A ∩B = ∅, where A is the necessity kernel (the set of objects from U
belonging to X without any doubt) and B is the non-possibility kernel (the set of
objects from U that for sure do not belong to X). In rough set theory [15,16], the
Brouwer-Zadeh lattice can be seen as an abstract model [4,5,6] representing each
concept X through pair of elements (A,B) where A is the lower approximation
(interior) and B is the complement of the upper approximation (exterior) of
X. In [10], an extension of the Brouwer-Zadeh lattice, called Pawlak-Brouwer-
Zadeh lattice, has been proposed, where a new operator, called Pawlak operator,
assigns the pair (C,D) to each concept X represented by pair (A,B), such that
C and D represent the lower approximations of A and B, respectively. The
rough set theory of Pawlak operator has been discussed in [12]. In this paper,
we reconsider the Pawlak-Brouwer-Zadeh lattice from Pawlak’s perspective of
reasoning about data [16] and Belnap’s idea of automated computer reasoning
[1]. In particular, we demonstrate that within the Pawlak-Brouwer-Zadeh lattice,
several many-valued logics naturally arise from a very general seven-valued logic,
which is useful for modeling automated data reasoning. It is interesting to observe
that this seven-valued logic corresponds to a reasoning system of argumentation
proposed by Jaina philosophers four centuries BC [3,18]. Furthermore, the seven-
valued logic is interesting from a cognitive psychology perspective. According
to the influential and highly cited article ’The Magical Number Seven, Plus
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or Minus Two: Some Limits on Our Capacity for Processing Information’ by
Miller [13], it is suggested that individuals can effectively handle approximately
seven stimuli simultaneously. This limit applies to both one-dimensional absolute
judgment and short-term memory.

To give an intuition of the seven-valued logic and the other logics deriving
from it, let us consider the following example. Consider a database containing
data about the symptoms and related diagnosed diseases for a number of pa-
tients. We can imagine that for each considered disease, there are three possible
types of diagnosis:

– the patient has the disease,
– the patient does not have the disease,
– it cannot be said whether the patient has or not the disease (because, for

instance, other tests have to be done).

On the other hand, for each patient x there may be a number of patients in
the database with the same symptoms. In this situation, it seems reasonable to
analyze the database by classifying patients according to the diagnoses received
by them and all other patients with the same symptoms. Proceeding in this
way, there will be seven possible states of truth of the following proposition:
“A patient with the same symptoms as x has the disease”. Let us name this
proposition by DISx and enumerate the possible cases:

– all the patients with the same symptoms as x have the disease, so that,
according to the available data, proposition DISx is true,

– some patients with the same symptoms as x have the disease and for the
others one cannot say if there is or not the disease, so that, according to the
available data, proposition DISx is sometimes true,

– for all the patients with the same symptoms as x one cannot say if there
is or not the disease, so that, according to the available data, proposition
DISx is unknown,

– some of the patients with the same symptoms as x have the disease and
the others have not the disease, so that, according to the available data,
proposition DISx is contradictory,

– among the patients with the same symptoms as x there are some with the
disease, some without the diseases and some for which one does not know if
there is or not the disease, so that, according to the available data, proposi-
tion DISx is fully contradictory,

– some patients with the same symptoms as x do not have the disease and for
the others one cannot say if there is or not the disease, so that, according to
the available data, proposition DISx is sometimes false,

– all the patients with the same symptoms as x have not the disease, so that,
according to the available data, proposition DISx is false.

The above seven situations are, of course, very detailed, so for practical reasons
it could be more convenient to aggregate some of them. For example, one could
distinguish between the following two situations, the first of which would suggest
some treatment, while in the second situation it would be more appropriate to
wait for the possible appearance of some other symptoms:
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– the case in which among the patients with the same symptoms there is some
patient with the disease and there is no patient without the disease, that is
the case in which proposition DISx is true or sometimes true, and

– the other cases.

To support decisions about triage, a reasonable approach could be the following:

– if proposition DISx is true or sometimes true, patient x should be hospital-
ized,

– if proposition DISx is false or sometimes false, patient x should not be
hospitalized,

– in all other cases, an expert doctor should be called to examine patient x to
make the decision about hospitalization.

To diagnose a complex disease, the database could be used as follows:

– if proposition DISx is true or sometimes true, patient x is diagnosed as
having the disease,

– if proposition DISx is unknown, some further medical tests are required for
patient x,

– if proposition DISx is contradictory or fully contradictory, an expert doctor
should be called to examine patient x to make the diagnosis,

– if proposition DISx is false or sometimes false, patient x is not diagnosed
as having the disease.

One can see that the basic case related to the general database query defines
a seven-valued logic with truth values “true”, “sometimes true”, “unknown”,
“contradictory”, “fully contradictory”, “sometimes false” and “false”. The rea-
soning about the treatment decision is based on a two-valued logic - apply or not
the treatment - derived from the basic seven-valued logic. The envisaged pro-
tocol for triage gives an example of a three valued-logic grounded again on the
basic seven-valued logic. Finally, the diagnostic procedure proposes a possible
four-valued logic that can also be obtained from the seven-valued logic.

Let us explain now how the basic seven-valued logic is related to the rough
set concept and to the Pawlak-Brouwer-Zadeh lattice. First, observe that the set
of all patients in the data set having the same symptoms as patient x represents
the equivalence class [x]R with respect to the indiscernibility relation R defined
in terms of symptoms on universe U which is the data set of patients. In other
words, we consider indiscernible two patients w and z in the data set if w has
the same symptoms as z. Observe that each disease is represented in the data
set by pair (A,B) where A is the set of patients from U having the disease, and
B is the set of patients from U not having the disease. The operators of the
Pawlak-Brouwer-Zadeh lattice permit to define other interesting sets of patients
from U . For example, applying the Brouwer negation to (A,B) we get (A,B)≈ =
(B,U − B), and consequently we obtain set U − B, i.e., the complement in U
of the set of patients without the disease, or, in other words, the set of patients
for whom there is the disease or it is unknown if there is the disease. In the
same perspective, applying the Kleene negation and the Brouwer negation to
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(A,B) we obtain (A,B)−≈ = (A,U − A), so that we get set U − A, i.e., the
complement in U of the set of patients with the disease, or, in other words, the
set of patients for whom there is not the disease or it is unknown if there is
or there is not the disease. Other interesting sets that can be obtained using
the operators of the Pawlak-Brouwer-Zadeh lattice are A ∪B, i.e., the set of all
patients for whom there is the disease or there is not the disease, and U−A−B,
i.e., the set of all patients for whom it is unknown if there is or there is not the
disease. Applying rough set theory, we can compute the lower and the upper
approximation of the above mentioned sets of patients from U . For example,
the set of patients x from U for whom all the other patients with the same
symptoms have the disease constitutes the lower approximation of A denoted
by RA. The set of all patients x from U for whom there is at least one patient
with the same symptoms that has the disease constitutes, instead, the upper
approximation of A denoted by RA. Within the Pawlak-Brouwer-Zadeh lattice,
the rough approximation can be obtained through the application of the Pawlak
operator that assigns pair (RA,RB) to pair (A,B), that is (A,B)L = (RA,RB).
Remembering that RA = U − R(U − A), using the Pawlak operator and the
other operators of the Pawlak-Brouwer-Zadeh lattice we can obtain the upper
approximation of set A starting from pair (A,B) as follows: (A,B)−≈L≈ =
(U −R(U −A), R(U −A)) = (R(A), R(U −A)). Analogously, starting from pair
(A,B), one can obtain all the following rough approximations: RA,RB,R(U −
A−B), R(U−A), R(U−B), R(A∪B), RA,RB,R(U−A−B). Using these rough
approximations we can define all the truth values of the seven-valued logic as
follows:

– set of patients from U for whom proposition DISx is true: RA,

– set of patients from U for whom proposition DISx is sometimes true:
R(U −B) ∩RA ∩R(U −A−B),

– set of patients from U for whom proposition DISx is unknown:
R(U −A−B),

– set of patients from U for whom proposition DISx is contradictory:
R(A ∪B) ∩RA ∩RB,

– set of patients from U for whom proposition DISx is fully contradictory:
RA ∩RB ∩R(U −A−B),

– set of patients from U for whom proposition DISx is sometimes false:
R(U −A) ∩RB ∩R(U −A−B),

– set of patients from U for whom proposition DISx is false: RB.

Using the truth values of the seven-valued logic and the operators of the Pawlak-
Brouwer-Zadeh lattice, one can reconstruct all the other logics derived from the
aggregation of some of the seven truth values. For example, the truth values of
the above mentioned two-valued logic for decisions about the treatment can be
formulated as follows:

– set of patients from U for whom proposition DISx is true or sometimes true:
RA ∪ (R(U −B) ∩RA ∩R(U −A−B)) = R(U −B) ∩RA, and
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– the other cases: R(U −A−B)∪ (R(A∪B)∩RA∩RB)∪ (RA∩RB∩R(U −
A − B)) ∪ (R(U − A) ∩ RB ∩ R(U − A − B)) ∪ RB = U − R(U − B) =
RB ∪R(U −A−B).

The framework we have discussed is also related to three-way decision which
is an interesting research line that has been deeply investigated in recent years
(see [19] for a survey). In fact, the three basic truth values - true, false, unknown
- define a three-valued logic, and the derived seven-valued logic is based on the
non-empty subsets of {true, false, unknown}.

This paper presents all the above considerations formally and in detail. It is
organized as follows. In the next section, we recall the Pawlak-Brouwer-Zadeh
lattice and the basic elements of rough set theory. In the following section, we
present the seven-valued logic and the other logics that can be derived from it.
The last section collects conclusions.

2 The Pawlak-Brouwer-Zadeh distributive De Morgan
lattices and indiscernibility-based rough set theory

This section recalls the Pawlak-Brouwer-Zadeh distributive De Morgan lattices
[10] and shows it as an abstract model of the classical rough set model based on
indiscernibility.

A system ⟨Σ,∧,∨,′ ,∼ , 0, 1⟩ is a quasi-Brouwer-Zadeh distributive lattice [7]
if the following properties (1)-(4) hold:

(1) Σ is a distributive lattice with respect to the join and the meet operations
∨, ∧ whose induced partial order relation is

a ≤ b iff a = a ∧ b (equivalently b = a ∨ b)

Moreover, it is required that Σ is bounded by the least element 0 and the
greatest element 1:

∀a ∈ Σ, 0 ≤ a ≤ 1

(2) The unary operation ′ : Σ → Σ is a Kleene (also Zadeh or fuzzy) comple-
mentation. In other words, for arbitrary a, b ∈ Σ,

(K1) a′′ = a,
(K2) (a ∨ b)′ = a′ ∧ b′,
(K3) a ∧ a′ ≤ b ∨ b′.

(3) The unary operation ∼ : Σ → Σ is a Brouwer (or intuitionistic) complemen-
tation. In other words, for arbitrary a, b ∈ Σ,

(B1) a ∧ a∼∼ = a,
(B2) (a ∨ b)∼ = a∼ ∧ b∼,
(B3) a ∧ a∼ = 0.

(4) The two complementations are linked by the interconnection rule which must
hold for arbitrary a ∈ Σ:

(in) a∼ ≤ a′.
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A structure ⟨Σ,∧,∨,′ ,∼ , 0, 1⟩ is a Brouwer-Zadeh distributive lattice if it is a
quasi-Brouwer-Zadeh distributive lattice satisfying the stronger interconnection
rule:

(s-in) a∼∼ = a∼′.

A Brouwer-Zadeh distributive lattice satisfying the ∨ De Morgan property:

(B2a) (a ∧ b)∼ = a∼ ∨ b∼

is called a De Morgan Brouwer-Zadeh distributive lattice.
An approximation operator, called Pawlak operator [10], on a De Morgan

Brouwer-Zadeh distributive lattice is an unary operation A : Σ → Σ for which
the following properties hold: for a, b ∈ Σ

A1) aA′ = a′A;
A2) a ≤ b implies bA∼ ≤ aA∼;
A3) aA∼ ≤ a∼ ;
A4) 0A = 0;
A5) a∼ = b∼ implies aA ∧ bA = (a ∧ b)A;
A6) aA ∨ bA ≤ (a ∨ b)A;
A7) aAA = aA;
A8) aA∼A = aA∼;
A9) (aA ∧ bA)A = aA ∧ bA.

2.1 Pawlak-Brouwer-Zadeh lattices and rough set theory

A knowledge base K = (U,R) is a relational system where U ̸= ∅ is a finite set
called the universe and R is an equivalence relation on U . For any x ∈ U , [x]R
is its equivalence class. The quotient set U/R is composed of all the equivalence
classes of R on U . Given the knowledge base K = (U,R), one can associate the
two subsets RX and RX to each subset X ⊆ U :

RX = {x ∈ U : [x]R ⊆ X},

RX = {x ∈ U : [x]R ∩X ̸= ∅}.

RX and RX are called the lower and the upper approximation of X, respectively.
Let us consider the set of all pairs ⟨A,B⟩ such that A,B ⊆ U and A∩B = ∅.

We denote by 3U the set of these pairs, i.e.,

3U = {⟨A,B⟩ : A,B ⊆ U and A ∩B = ∅}.

Given a knowledge base K = (U,R), we can define an unary operator
L : 3U → 3U , as follows: for any ⟨A,B⟩ ∈ 3U

⟨A,B⟩L = ⟨RA,RB⟩ .

Let us consider the following operations on 3U :

⟨A,B⟩ ⊓ ⟨C,D⟩ = ⟨A ∩ C,B ∪D⟩,
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⟨A,B⟩ ⊔ ⟨C,D⟩ = ⟨A ∪ C,B ∩D⟩,

⟨A,B⟩− = ⟨B,A⟩,

⟨A,B⟩≈ = ⟨B,U −B⟩.

The following results hold [10].

Proposition 1. The structure
〈
3U ,⊓,⊔,− ,≈ ,L , ⟨∅, U⟩ , ⟨U, ∅⟩

〉
is a Pawlak-

Brouwer-Zadeh lattice. ⊓⊔

Proposition 2. For every Pawlak-Brouwer-Zadeh lattice LPBZ =〈
Σ,∧,∨,′ ,∼ ,A , 0, 1

〉
, satisfying the condition

(P) there exists c ∈ Σ for which c = c′,

there is a knowledge base K = (U,R) such that the structure

RSPBZ(U,R) =
〈
3U ,⊓,⊔,− ,≈ ,L , ⟨∅, U⟩ , ⟨U, ∅⟩

〉
is isomorphic to LPBZ .

3 The seven-valued logic of the Pawlak-Brouwer-Zadeh
lattice

In the following, we shall identify a set S ⊆ U with the pair ⟨S,U − S⟩. Given a
knowledge base K = (U,R), for each pair a = ⟨A,B⟩ , A,B ⊆ U,A ∩B = ∅, the
following sets can be considered:

– the true part of ⟨A,B⟩:
T(A,B) =

= {x ∈ U : [x]R ⊆ A} = RA = ⟨A,B⟩L−≈
= aA′∼,

– the sometimes true part of ⟨A,B⟩:
sT (A,B) =
= {x ∈ U : [x]R ⊆ (U −B), [x]R ∩A ̸= ∅ and [x]R ∩ (U −A−B) ̸= ∅} =
= R(U −B) ∩RA ∩R(U −A−B) =

= ⟨A,B⟩≈L≈ ⊓
(
⟨A,B⟩≈− ⊓ ⟨A,B⟩−≈−

)L≈−
⊓ ⟨A,B⟩−≈L≈−

=

= a∼A∼ ∧ (a∼′ ∧ a′∼′)
A∼′ ∧ a′∼A∼′,

– the unknown part of ⟨A,B⟩:
U(A,B) =

= {x ∈ U : [x]R ⊆ U−A−B} = R(U−A−B) =
(
⟨A,B⟩≈− ⊓ ⟨A,B⟩−≈−

)L−≈
=

= (a∼′ ∧ a′∼′)
A′∼

,
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– the contradictory part of ⟨A,B⟩:
K(A,B) =
= {x ∈ U : [x]R ⊆ A ∪B, [x]R ∩B ̸= ∅ and [x]R ∩A ̸= ∅} =
= R(A ∪B) ∩RA ∩RB =

=
(
⟨A,B⟩ ⊔ ⟨A,B⟩−

)L−≈
⊓ ⟨A,B⟩−≈L≈− ⊓ ⟨A,B⟩≈L≈−

=

= (a ∨ a′)
A′∼ ∧ a′∼A∼′ ∧ a∼A∼′,

– the fully contradictory part of ⟨A,B⟩:
fK(A,B) =
= {x ∈ U : [x]R ∩A ̸= ∅, [x]R ∩B ̸= ∅ and [x]R ∩ (U −A−B) ̸= ∅} =
= RA ∩RB ∩R(U −A−B) =

= ⟨A,B⟩−≈L≈− ⊓ ⟨A,B⟩≈L≈− ⊓
(
⟨A,B⟩≈− ∧ ⟨A,B⟩−≈−

)L≈−
=

= a′∼A∼′ ∧ a∼A∼′ ∧ (a∼′ ∧ a′∼′)
A∼′

,
– the sometimes false part of ⟨A,B⟩:

sF (A,B) =
= {x ∈ U : [x]R ⊆ (U − A), [x]R ∩ B ̸= ∅ and [x]R ∩ (U − A − B) ̸= ∅} =
R(U −A) ∩RB ∩R(U −A−B) =

= ⟨A,B⟩−≈L≈ ⊓
(
⟨A,B⟩≈− ⊓ ⟨A,B⟩−≈−

)L≈−
⊓ ⟨A,B⟩−≈L≈−

=

= a′∼A∼ ∧ (a∼′ ∧ a′∼′)
A∼′ ∧ a′∼A∼′,

– the false part of ⟨A,B⟩:
F(A,B) =

= {x ∈ U : [x]R ⊆ B} = RB = ⟨A,B⟩L≈
= aA∼.

The truth values of the seven-valued logic can be represented by the lattice in
Figure 1.

       

   
T 

F 

sT 

U K fK 

sF 

Fig. 1. Seven-valued logic truth value lattice
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Let us remark that truth value operators of the seven-valued logic can be
characterized in terms of upper approximations RA,RB and R(U − A − B) as
follows: for all x ∈ U

– x ∈ T(A,B) = x ∈ RA ∧ x /∈ RB ∧ x /∈ R(U −A−B),
– x ∈ sT (A,B) = x ∈ RA ∧ x /∈ RB ∧ x ∈ R(U −A−B),
– x ∈ U(A,B) = x /∈ RA ∧ x /∈ RB ∧ x ∈ R(U −A−B),
– x ∈ K(A,B) = x ∈ RA ∧ x ∈ RB ∧ x /∈ R(U −A−B),
– x ∈ fK(A,B) = x ∈ RA ∧ x ∈ RB ∧ x ∈ R(U −A−B),
– x ∈ sF (A,B) = x /∈ RA ∧ x ∈ RB ∧ x ∈ R(U −A−B),
– x ∈ F(A,B) = x /∈ RA ∧ x ∈ RB ∧ x /∈ R(U −A−B).

Observe that for all A,B ⊆ U,A ∩B = ∅,

T(A,B)∪ sT (A,B)∪U(A,B)∪K(A,B)∪ fK(A,B)∪ sF (A,B)∪F(A,B) = U

and for all pairs (O1,O2) with O1,O2 ∈ O= {T, sT ,U,K, fK, sF ,F} with
O1 ̸= O2

O1(A,B) ∩O2(A,B) = ∅.

Several aggregations of the truth value operators in O are interesting. Among
them, the following upward and downward aggregations are particularly inter-
esting:

– the at least true part of ⟨A,B⟩: T↑(A,B) = T(A,B),
– the at least sometimes true part of ⟨A,B⟩:

sT ↑(A,B) = sT (A,B) ∪T(A,B) =
= {x ∈ U : [x]R ⊆ U −B and [x]R ∩A ̸= ∅} = R(U −B) ∩RA =

= ⟨A,B⟩≈L≈ ⊓ ⟨A,B⟩−≈L≈−
= a∼A∼ ∧ a′∼A∼′,

– the at least unknown part of ⟨A,B⟩:
U↑(A,B) = U(A,B) ∪ sT (A,B) ∪T(A,B)
= {x ∈ U : [x]R ⊆ U −B} = R(U −B) =

= ⟨A,B⟩≈L≈
= a∼A∼,

– the at least contradictory part of ⟨A,B⟩:
K↑(A,B) = K(A,B) ∪ sT (A,B) ∪T(A,B) =
= {x ∈ U : ([x]R ⊆ (A ∪B) or [x]R ⊆ (U −B)) and [x]R ∩A ̸= ∅} =
= (R(A ∪B) ∪R(U −B)) ∩RA =

=
(

(⟨A,B⟩ ⊔ ⟨A,B⟩−)L−≈ ⊔ ⟨A,B⟩≈L≈
)
⊓ ⟨A,B⟩−≈L≈−

=

=
(
(a ∨ a′)A′∼ ∨ a∼A∼) ∨ a′∼A∼′,

– the at least fully contradictory part of ⟨A,B⟩:
fK↑(A,B) = fK(A,B) ∪ sT (A,B) ∪T(A,B)
= {x ∈ U : [x]R ⊆ A or ([x]R ∩A ̸= ∅ and [x]R ∩ (U −A−B) ̸= ∅} =
= RA ∪ (RA ∩R(U −A−B) =

= ⟨A,B⟩L−≈ ⊔ (⟨A,B⟩−≈L≈− ⊓
(
⟨A,B⟩≈− ⊓ ⟨A,B⟩−≈−

)L≈−
=

= aA′∼ ∨
(
a′∼A∼′ ∧ (a∼′ ∧ a′∼′)A∼′),
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– the at least sometimes false part of ⟨A,B⟩:
sF ↑(A,B) = sF (A,B)∪U(A,B)∪K(A,B)∪fK(A,B)∪sT (A,B)∪T(A,B)

= {x ∈ U : [x]R ∩ (U −B) ̸= ∅} = R(U −B) = ⟨A,B⟩L≈−
= aA∼′,

– the at least false part of ⟨A,B⟩:
F↑(A,B) = U = ⟨U, ∅⟩ = 1,

– the at most false part of ⟨A,B⟩: F↓(A,B) = F(A,B),
– the at most sometimes false part of ⟨A,B⟩:

sT ↓(A,B) = sF (A,B) ∪ F(A,B) =
= {x ∈ U : [x]R ⊆ U −A and [x]R ∩B ̸= ∅} = R(U −A) ∩RF =

= ⟨A,B⟩−≈L≈ ⊓ ⟨A,B⟩≈L≈−
= a′∼A∼ ∧ a∼A∼′,

– the at most unknown part of ⟨A,B⟩:
U↓(A,B) = U(A,B) ∪ sF (A,B) ∪ F(A,B)
= {x ∈ U : [x]R ⊆ U −A} = R(U −A) =

= ⟨A,B⟩−≈L≈
= a′∼A∼,

– the at most contradictory part of ⟨A,B⟩:
K↓(A,B) = K(A,B) ∪ sF (A,B) ∪ F(A,B) =
= {x ∈ U : ([x]R ⊆ (A ∪B) or [x]R ⊆ (U −A)) and [x]R ∩B ̸= ∅} =
= (R(A ∪B) ∪R(U −A)) ∩RB =

=
(

(⟨A,B⟩ ⊔ ⟨A,B⟩−)L−≈ ⊔ ⟨A,B⟩−≈L≈
)
⊓ ⟨A,B⟩≈L≈−

=

=
(
(a ∨ a′)A′∼ ∨ a′∼A∼) ∨ a∼A∼′,

– the at most fully contradictory part of ⟨A,B⟩:
fK↓(A,B) = fK(A,B) ∪ sF (A,B) ∪ F(A,B)
= {x ∈ U : [x]R ⊆ B or ([x]R ∩B ̸= ∅ and [x]R ∩ (U −A−B) ̸= ∅} =
= RB ∪ (RB ∩R(U −A−B) =

= ⟨A,B⟩L≈ ⊔ (⟨A,B⟩≈L≈− ⊓
(
⟨A,B⟩≈− ⊓ ⟨A,B⟩−≈−

)L≈−
=

= aA∼ ∨
(
a∼A∼′ ∧ (a∼′ ∧ a′∼′)A∼′),

– the at most sometimes true part of ⟨A,B⟩:
sT ↓(A,B) = sT (A,B)∪U(A,B)∪K(A,B)∪fK(A,B)∪sF (A,B)∪F(A,B)

= {x ∈ U : [x]R ∩ (U −A) ̸= ∅} = R(U −A) = ⟨A,B⟩L−≈
= aA′∼,

– the at most true part of ⟨A,B⟩:
T↓(A,B) = U = ⟨U, ∅⟩ = 1.

Let us consider the set of the upward truth value operators
O↑ = {T↑, sT↑,U↑,K↑, fK↑, sF↑,F↑}
and the set of the downward truth value operators
O↓ = {T↓, sT↓,U↓,K↓, fK↓, sF↓,F↓}.
On the basis of O↑ and O↓ one n-valued logic with respect to the knowledge

base K = (U,R) is defined by the set of truth value operators (O1, . . . On) such
that, for all A,B ⊆ U,A ∩B = ∅, we have

– for all i = 1, . . . , n
• either Oi(A,B) = M1(A,B) ∪ . . . ∪Mk(A,B) with M1, . . . ,Mk ∈ O↑ or
• Oi(A,B) = M1(A,B) ∪ . . . ∪Mk(A,B) with M1, . . . ,Mk ∈ O↓ or

• Oi(A,B) =

(
M1(A,B)∪. . .∪Mh(A,B)

)
∩
(
Mh+1(A,B)∪. . .∪Mk(A,B)

)
with M1, . . . ,Mh ∈ O↑ and Mh+1, . . . ,Mk ∈ O↓,
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and
– for all Oi, Oj ∈ (O1, . . . On), Oi(A,B) ∩Oj(A,B) = ∅,
–

⋃n
i=1 Oi(A,B) = U .

Among the many posible logics that can be defined in this way, consider the
Belnap four-valued logic [2] defined by the set of truth value operators

(TBelnap,UBelnap,KBelnap,FBelnap)

with

– TBelnap(A,B) = sT ↑(A,B) = T(A,B) ∪ sT (A,B) = RA ∩R(U −B),
– UBelnap(A,B) = U(A,B) = U↑(A,B) ∩U↓(A,B) = R(U −A−B),
– KBelnap(A,B) = (K↑(A,B) ∪ fK↑(A,B)) ∩ (K↓(A,B) ∪ fK↓(A,B)) =

K(A,B) ∪ fK(A,B) = RA ∩RB,
– FBelnap(A,B) = sF ↑(A,B) = F(A,B) ∪ sF (A,B) = RB ∩R(U −A).

The above Belnap four-valued logic can be interpreted in terms of rough approx-
imations as follows. Consider the knowledge base K = (U,R), x ∈ U , and the
concept ⟨A,B⟩ ∈ 3U . For all x ∈ U we have

– [x]R ∩A ̸= ∅, i.e., x ∈ RA, is an argument for truth,
– [x]R ∩B ̸= ∅, i.e., x ∈ RB, is an argument for falsehood.

Consequently,

– if x ∈ RA and x /∈ RB (which is equivalent to x ∈ R(U − B)), there
are arguments for truth and there are no arguments for falsehood, so that
x ∈ TBelnap(A,B),

– if x /∈ RA and x /∈ RB (which is equivalent to x ∈ R(U −A−B)), there are
no arguments for truth and there are no arguments for falsehood, so that
x ∈ UBelnap(A,B),

– if x ∈ RA and x ∈ RB , there are arguments for truth and there are
arguments for falsehood, so that x ∈ KBelnap(A,B),

– if x /∈ RA and x ∈ RB (which is equivalent to x ∈ R(U − A)), there
are no arguments for truth and there are arguments for falsehood, so that
x ∈ FBelnap(A,B).

Comparing the truth value operators of seven-valued logic, expressed in terms of
upper approximations RA,RB and R(U−A−B), with the Belnap’s truth value
operators of the four-valued logic reveals that the latter is different because it
does not consider R(U −A−B).

4 Conclusions

The seven-valued logic considered in this paper naturally arises within the rough
set framework, allowing to distinguish vagueness due to imprecision from ambi-
guity due to coarseness. We discussed the usefulness of this seven-valued logic
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for reasoning about data. We showed that the Pawlak-Brouwer-Zadeh lattice is
the proper algebraic structure for this seven-valued logic. We proposed also a
general framework permitting to obtain other interesting many-valued logics by
aggregation of truth value operators in the basic seven-valued logic. We plan
to continue our research in this direction, investigating typical rough set topics,
such as calculation of reducts and rule induction. We intend also to extend the
seven-valued logic to reasoning about ordered data using the dominance-based
rough set approach [8] and the related bipolar Pawlak-Brouwer-Zadeh lattice
[9,11]. Another interesting line of research we want to pursue is related to inves-
tigation of connections with other algebra models for rough sets such as Nelson
algebra, Heyting algebra,  Lukasiewicz algebra, Stone algebra and so on (see, e.g.,
chapter 12 in [17]). We also propose to study the relations between the rough
set approach we adopted to obtain the seven-valued logic and the other logics
that can be derived from it, and the approach presented in [14] that derives four-
valued logic from variable precision rough set model [20]. Finally, with respect
to the seven-valued logic we proposed, we plan to investigate the tableau calculi
for deduction systems, taking into account also soundness and completeness.
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