Skip to main content

Multi-heuristic Induction of Decision Rules

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2023)

Abstract

The main objectives of data mining tasks involve extracting knowledge from data, which can be presented in the form of distributed local sources or centralized one. Inducing decision rules from one local data source is relatively straightforward. Nevertheless, obtaining a global model of rules based on different rule-based models is a more complicated task. In the paper, a new method for inducing decision rules from different sets of rules considered as data sources that are spread out is proposed. Each data source is characterized by a set of rules that are derived from the decision table using three different heuristics. To achieve a comprehensive model that represents the knowledge found within these different models, methods for global optimization relative to length and support are proposed. Experiments were performed on datasets from UCI Machine Learning Repository taking into account the characteristics of induced rule sets, i.e., their number, length and support, and classification accuracy. Constructed global rule-based models, taking into account average values, are comparable to the best results related to local rule-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Morgan Kaufmann (1994)

    Google Scholar 

  2. Alsolami, F., Amin, T., Moshkov, M., Zielosko, B., Zabinski, K.: Comparison of heuristics for optimization of association rules. Fund. Inform. 166(1), 1–14 (2019). https://doi.org/10.3233/FI-2019-1791

    Article  MathSciNet  Google Scholar 

  3. Amin, T., Chikalov, I., Moshkov, M., Zielosko, B.: Dynamic programming approach for partial decision rule optimization. Fund. Inform. 119(3–4), 233–248 (2012). https://doi.org/10.3233/FI-2012-735

    Article  MathSciNet  Google Scholar 

  4. Bonates, T., Hammer, P.L., Kogan, A.: Maximum patterns in datasets. Discret. Appl. Math. 156(6), 846–861 (2008)

    Article  MathSciNet  Google Scholar 

  5. Fu, Y.: Distributed data mining: an overview. Newsl. IEEE Tech. Committ. Distrib. Process. 4(3), 5–9 (2001)

    Google Scholar 

  6. Grzegorowski, M., Ślȩzak, D.: On resilient feature selection: computational foundations of R-C-reducts. Inf. Sci. 499, 25–44 (2019). https://doi.org/10.1016/j.ins.2019.05.041

    Article  MathSciNet  Google Scholar 

  7. Hall, L.O., Chawla, N., Bowyer, K.W., Kegelmeyer, W.P.: Learning rules from distributed data. In: Zaki, M.J., Ho, C.-T. (eds.) LSPDM 1999. LNCS (LNAI), vol. 1759, pp. 211–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46502-2_11

    Chapter  Google Scholar 

  8. Kelly, M., Longjohn, R., Nottingham, K.: The UCI machine learning repository. https://archive.ics.uci.edu. Accessed June 2023

  9. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39, 261–283 (2013)

    Article  Google Scholar 

  10. Moshkov, M., Piliszczuk, M., Zielosko, B.: Greedy algorithm for construction of partial association rules. Fund. Inform. 92(3), 259–277 (2009)

    MathSciNet  Google Scholar 

  11. Moshkov, M., Zielosko, B., Tetteh, E.T.: Selected data mining tools for data analysis in distributed environment. Entropy 24(10) (2022). https://doi.org/10.3390/e24101401

  12. Moshkov, M., Zielosko, B., Tetteh, E.T., Glid, A.: Learning decision rules from sets of decision trees. In: Buchmann, R.A., et al. (eds.) Information Systems Development: Artificial Intelligence for Information Systems Development and Operations (ISD2022 Proceedings), Cluj-Napoca, Romania, 31 August–2 September 2022. Risoprint/Association for Information Systems (2022)

    Google Scholar 

  13. Nguyen, H.S., Ślęzak, D.: Approximate reducts and association rules. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 137–145. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48061-7_18

    Chapter  Google Scholar 

  14. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)

    Article  MathSciNet  Google Scholar 

  15. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MathSciNet  Google Scholar 

  16. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Article  Google Scholar 

  17. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)

    Article  Google Scholar 

  18. Serengil, S.I.: ChefBoost: a lightweight boosted decision tree framework (2021). https://doi.org/10.5281/zenodo.5576203

  19. Sikora, M., Matyszok, P., Wróbel, L.: SCARI: separate and conquer algorithm for action rules and recommendations induction. Inf. Sci. 607, 849–868 (2022). https://doi.org/10.1016/j.ins.2022.06.026

    Article  Google Scholar 

  20. Stańczyk, U., Zielosko, B.: Heuristic-based feature selection for rough set approach. Int. J. Approximate Reasoning 125, 187–202 (2020). https://doi.org/10.1016/j.ijar.2020.07.005

    Article  MathSciNet  Google Scholar 

  21. Stawicki, S., Ślȩzak, D., Janusz, A., Widz, S.: Decision bireducts and decision reducts - a comparison. Int. J. Approximate Reasoning 84, 75–109 (2017). https://doi.org/10.1016/j.ijar.2017.02.007

    Article  MathSciNet  Google Scholar 

  22. Wróblewski, J.: Theoretical foundations of order-based genetic algorithms. Fund. Inform. 28(3–4), 423–430 (1996). https://doi.org/10.3233/FI-1996-283414

    Article  MathSciNet  Google Scholar 

  23. Zielosko, B., Piliszczuk, M.: Greedy algorithm for attribute reduction. Fund. Inform. 85(1–4), 549–561 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Zielosko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zielosko, B., Tetteh, E.T., Hunchak, D. (2023). Multi-heuristic Induction of Decision Rules. In: Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J. (eds) Rough Sets. IJCRS 2023. Lecture Notes in Computer Science(), vol 14481. Springer, Cham. https://doi.org/10.1007/978-3-031-50959-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50959-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50958-2

  • Online ISBN: 978-3-031-50959-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics