Abstract
The recently developed transformer has been largely explored in the research field of computer vision and especially improve the performance of single object tracking. However, the majority of current efforts concentrate on combining and enhancing convolutional neural network (CNN)-generated features and cannot fully excavating the potential of transformer. Motivated by this, we introduce multi-granularity theory into the pure transformer-based single object tracker and design a multi-granularity feature fusion module. With a view to fuse the feature of different granularity and enhance the feature representation, we design the double-branch transformer feature extractor and utilize cross-attention mechanism to fuse the feature. In our extensive experiments on multiple tracking benchmarks, including OTB2015, VOT2020, TrackingNet, GOT-10k, LaSOT, our proposed method named MGTT, the results could demonstrate that the proposed tracker achieves better performance than multiple state-of-the-art trackers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018a)
Yinda, X., Wang, Z., Li, Z., Yuan, Y., Gang, Y.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12549–12556 (2020)
Noor, S., Waqas, M., Saleem, M.I., Minhas, H.N.: Automatic object tracking and segmentation using unsupervised SiamMask. IEEE Access 9, 106550–106559 (2021)
Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Atom: accurate tracking by overlap maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4660–4669 (2019)
Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_46
Cucci, D.A., Matteucci, M., Bascetta, L.: Pose tracking and sensor self-calibration for an all-terrain autonomous vehicle. IFAC-PapersOnLine 49(15), 25–31 (2016)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Li, P., Wang, D., Wang, L., Lu, H.: Deep visual tracking: review and experimental comparison. Pattern Recognit. 76, 323–338 (2018b)
Marvasti-Zadeh, S.M., Cheng, L., Ghanei-Yakhdan, H., Kasaei, S.: Deep learning for visual tracking: a comprehensive survey. IEEE Trans. Intell. Transp. Syst. 23(5), 3943–3968 (2021)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8126–8135 (2021a)
Yan, B., Peng, H., Fu, J., Wang, D., Lu, H.: Learning spatio-temporal transformer for visual tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10448–10457 (2021a)
Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1571–1580 (2021a)
Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3286–3295 (2019)
Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. Adv. Neural Inf. Process. Syst. 32 (2019)
Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16519–16529 (2021)
Li, J., Huang, C., Qi, J., Qian, Y., Liu, W.: Three-way cognitive concept learning via multi-granularity. Inf. Sci. 378, 244–263 (2017a)
Herrera, F., Herrera-Viedma, E., Martınez, L.: A fusion approach for managing multi-granularity linguistic term sets in decision making. Fuzzy Sets Syst. 114(1), 43–58 (2000)
Yao, Y.: Perspectives of granular computing. In: 2005 IEEE International Conference on Granular Computing, vol. 1 (2005)
Qian, Y., Liang, J., Yao, Y., Dang, C.: MGRS: a multi-granulation rough set. Inf. Sci. 180(6), 949–970 (2010)
Yao, J.T., Vasilakos, A.V., Pedrycz, W.: Granular computing: perspectives and challenges. IEEE Trans. Cybern. 43(6), 1977–1989 (2013)
Yao, J.T., Yao, Y.Y.: Induction of classification rules by granular computing. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 331–338. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45813-1_43
Yao, J.T.: A ten-year review of granular computing. In: 2007 IEEE International Conference on Granular Computing (GRC 2007), p. 734. IEEE (2007)
Li, F., Miao, D., Pedrycz, W.: Granular multi-label feature selection based on mutual information. Pattern Recognit. 67, 410–423 (2017b)
Zhang, X., Miao, D., Liu, C., Le, M.: Constructive methods of rough approximation operators and multigranulation rough sets. Knowl.-Based Syst. 91, 114–125 (2016)
Miao, D.Q., Wang, G.Y., Liu, Q., Lin, T.Y., Yao, Y.Y.: Granular computing: past, present and future prospects (2007)
Wang, Z., Miao, D., Zhao, C., Luo, S., Wei, Z.: A robust long-term pedestrian tracking-by-detection algorithm based on three-way decision. In: Mihálydeák, T., et al. (eds.) IJCRS 2019. LNCS (LNAI), vol. 11499, pp. 522–533. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22815-6_40
Wang, Z.Y., Miao, D.Q., Zhao, C.R., Luo, S., Wei, Z.H.: Pedestrian tracking and detection combined algorithm based on multi-granularity features. Comput. Res. Dev. 57, 996–1002 (2020)
Ruoyi, D., Xie, J., Ma, Z., Chang, D., Song, Y.-Z., Guo, J.: Progressive learning of category-consistent multi-granularity features for fine-grained visual classification. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9521–9535 (2021)
Li, J., Zhang, S., Huang, T.: Multi-scale 3D convolution network for video based person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8618–8625 (2019)
Chen, C.F.R., Fan, Q., Panda, R.: Crossvit: cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 357–366 (2021b)
Zhang, Z., Lan, C., Zeng, W., Chen, Z.: Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10407–10416 (2020b)
Lin, T.-Y., Dollár, P., Girshick, R., He, K.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, L., Fan, H., Zhang, Z., Yong, X., Ling, H.: Swintrack: a simple and strong baseline for transformer tracking. Adv. Neural Inf. Process. Syst. 35, 16743–16754 (2022)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)
Kristan, M., et al.: The eighth visual object tracking VOT2020 challenge results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 547–601. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_39
Müller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: a large-scale dataset and benchmark for object tracking in the wild. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 310–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_19
Huang, L., Zhao, X., Huang, K.: Got-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562–1577 (2019)
Fan, H., et al.: Lasot: a high-quality benchmark for large-scale single object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5374–5383 (2019)
Fan, H., et al.: Lasot: a high-quality large-scale single object tracking benchmark. Int. J. Comput. Vis. 129, 439–461 (2021)
Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Zheng, M., et al.: End-to-end object detection with adaptive clustering transformer. arXiv preprint arXiv:2011.09315 (2020)
Wang, H., Zhu, Y., Adam, H., Yuille, A., Chen, L.C. Max-deeplab: end-to-end panoptic segmentation with mask transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5463–5474 (2021b)
Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022)
Sun, P., et al.: Transtrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)
Wang, Z., Miao, D.: Spatial-temporal single object tracking with three-way decision theory. Int. J. Approx. Reason. 154, 38–47 (2023)
Yao, Y., Zhong, N.: Granular computing (2008)
Wang, Z., Shi, C., Wei, L., Yao, Y.: Tri-granularity attribute reduction of three-way concept lattices. Knowl.-Based Syst. 110762 (2023)
Chen, Y., Zhu, P., Li, Q., Yao, Y.: Granularity-driven trisecting-and-learning models for interval-valued rule induction. Appl. Intell. 1–23 (2023)
Deng, W., Wang, G., Zhang, X., Ji, X., Li, G.: A multi-granularity combined prediction model based on fuzzy trend forecasting and particle swarm techniques. Neurocomputing 173, 1671–1682 (2016)
Liu, K., Li, T., Yang, X., Ju, H., Yang, X., Liu, D.: Feature selection in threes: neighborhood relevancy, redundancy, and granularity interactivity. Appl. Soft Comput. 110679 (2023)
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
Stepaniuk, J., Skowron, A.: Three-way approximation of decision granules based on the rough set approach. Int. J. Approx. Reason. 155, 1–16 (2023)
Janusz, A., Zalewska, A., Wawrowski, Ł, Biczyk, P., Ludziejewski, J., Sikora, M., et al.: Brightbox-a rough set based technology for diagnosing mistakes of machine learning models. Appl. Soft Comput. 141, 110285 (2023)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Kong, T., Yao, A., Chen, Y., Sun, F.: Hypernet: towards accurate region proposal generation and joint object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 845–853 (2016)
Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: looking wider to see better. In: ICLR Workshop. Cited on, p. 111 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5
Honari, S., Yosinski, J., Vincent, P., Pal, C.: Recombinator networks: learning coarse-to-fine feature aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5743–5752 (2016)
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
ILoshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: MDNet: a semantically and visually interpretable medical image diagnosis network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6428–6436 (2017)
Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: Eco: efficient convolution operators for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6638–6646 (2017)
Yan, B., Peng, H., Wu, K., Wang, D., Fu, J., Lu, H.: Lighttrack: finding lightweight neural networks for object tracking via one-shot architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15180–15189 (2021b)
Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019)
Bhat, G., Johnander, J., Danelljan, M., Khan, F.S., Felsberg, M.: Unveiling the power of deep tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 493–509. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_30
Yu, Y., Xiong, Y., Huang, W., Scott, M.R.: Deformable Siamese attention networks for visual object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6728–6737 (2020)
Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam R-CNN: visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020)
Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: Siamcar: siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6269–6277 (2020)
Acknowledgements
This work is supported in part by the National Key Research and Development Plan under Grant No. 2022YFB3104700, the National Science Foundation of China under Grant No. 61976158 and No. 62376198, the National Science Foundation of China under Grant No. 62076182. This paper is partially supported by the Jiangxi “Double Thousand Plan”, and the National Natural Science Foundation of China (Serial No. 62163016), and the Jiangxi Provincial natural science fund (No. 20212ACB202001) and the National Natural Science Foundation of China No. 62006172.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Z., Miao, D. (2023). Multi-granularity Feature Fusion for Transformer-Based Single Object Tracking. In: Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J. (eds) Rough Sets. IJCRS 2023. Lecture Notes in Computer Science(), vol 14481. Springer, Cham. https://doi.org/10.1007/978-3-031-50959-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-50959-9_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50958-2
Online ISBN: 978-3-031-50959-9
eBook Packages: Computer ScienceComputer Science (R0)