Abstract
This study discusses some essential problems of explainable machine learning applications in the FMCG market. The solution combines several machine learning techniques, including clustering, dimensionality reduction, rough set reducts, and rule-based explanations. We propose a novel approach to improve human-computer interaction with the XAI prototype method by generating human-readable cluster descriptions, emphasizing each cluster’s most discernible characteristics. To evaluate our method, we refer to the challenging task of demand prediction. The results confirmed that we could achieve five times better work performance without losing quality.
Research co-funded by Polish National Centre for Research and Development (NCBiR) grant no. POIR.01.01.01-00-0963/19-00 and by Polish National Science Centre (NCN) grant no. 2018/31/N/ST6/00610.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on Explainable Artificial Intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052
Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012
Baryannis, G., Dani, S., Antoniou, G.: Predicting supply chain risks using machine learning: the trade-off between performance and interpretability. Futur. Gener. Comput. Syst. 101, 993–1004 (2019). https://doi.org/10.1016/j.future.2019.07.059
Dutta, S., Skowron, A.: Concepts approximation through dialogue with user. In: Mihálydeák, T., et al. (eds.) IJCRS 2019. LNCS (LNAI), vol. 11499, pp. 295–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22815-6_23
Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res. 20, 177:1–177:81 (2019)
Frey, C.B., Osborne, M.A.: The future of employment: how susceptible are jobs to computerisation? Technol. Forecast. Soc. Chang. 114, 254–280 (2017). https://doi.org/10.1016/j.techfore.2016.08.019
Goy, S., Coors, V., Finn, D.: Grouping techniques for building stock analysis: a comparative case study. Energy Build. 236, 110754 (2021). https://doi.org/10.1016/j.enbuild.2021.110754
Grzegorowski, M.: Selected aspects of interactive feature extraction. In: Peters, J.F., Skowron, A., Bhaumik, R.N., Ramanna, S. (eds.) Transactions on Rough Sets XXIII. LNCS, vol. 13610, pp. 121–287. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-662-66544-2_8
Grzegorowski, M., Litwin, J., Wnuk, M., Pabis, M., Marcinowski, L.: Survival-based feature extraction - application in supply management for dispersed vending machines. IEEE Trans. Ind. Inform. 19(3), 3331–3340 (2023). https://doi.org/10.1109/TII.2022.3178547
Grzegorowski, M., Ślȩzak, D.: On resilient feature selection: computational foundations of r-C-reducts. Inf. Sci. 499, 25–44 (2019). https://doi.org/10.1016/j.ins.2019.05.041
Guo, X., Lin, H., Wu, Y., Peng, M.: A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems. Futur. Gener. Comput. Syst. 113, 407–417 (2020). https://doi.org/10.1016/j.future.2020.07.023
Heide, N.F., Muller, E., Petereit, J., Heizmann, M.: \(X^3\)SEG: model-agnostic explanations for the semantic segmentation of 3D point clouds with prototypes and criticism. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 3687–3691 (2021). https://doi.org/10.1109/ICIP42928.2021.9506624
Janusz, A., Ślęzak, D.: Computation of approximate reducts with dynamically adjusted approximation threshold. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 19–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25252-0_3
Kannout, E., Grodzki, M., Grzegorowski, M.: Towards addressing item cold-start problem in collaborative filtering by embedding agglomerative clustering and FP-growth into the recommendation system, vol. 2023 OnLine-First (2023). https://doi.org/10.2298/CSIS221116052K
Khan, I.A., et al.: XSRU-IoMT: explainable simple recurrent units for threat detection in internet of medical things networks. Futur. Gener. Comput. Syst. 127, 181–193 (2022). https://doi.org/10.1016/j.future.2021.09.010
Khan, S.A., Naim, I., Kusi-Sarpong, S., Gupta, H., Idrisi, A.R.: A knowledge-based experts’ system for evaluation of digital supply chain readiness. Knowl.-Based Syst. 228, 107262 (2021). https://doi.org/10.1016/j.knosys.2021.107262
Kobak, D., Berens, P.: The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416 (2019). https://doi.org/10.1038/s41467-019-13056-x
McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction (2018). https://doi.org/10.48550/arXiv.1802.03426
Nguyen, H.S., Jankowski, A., Peters, J.F., Skowron, A., Stepaniuk, J., Szczuka, M.: Discovery of process models from data and domain knowledge: a rough-granular approach. IGI Glob. (2010). https://doi.org/10.4018/978-1-60566-324-1.ch002
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007). https://doi.org/10.1016/j.ins.2006.06.003
Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982). https://doi.org/10.1007/BF01001956
Penta, A., Pal, A.: What is this cluster about? Explaining textual clusters by extracting relevant keywords. Knowl.-Based Syst. 229, 107342 (2021). https://doi.org/10.1016/j.knosys.2021.107342
Riza, L.S., et al.: Implementing algorithms of rough set theory and fuzzy rough set theory in the R package ‘RoughSets’. Inf. Sci. 287, 68–89 (2014). https://doi.org/10.1016/j.ins.2014.07.029
Rudin, C.: Please stop explaining black box models for high stakes decisions. CoRR abs/1811.10154 (2018). arxiv.org/abs/1811.10154
Stawicki, S., Ślȩzak, D., Janusz, A., Widz, S.: Decision bireducts and decision reducts - a comparison. Int. J. Approx. Reason. 84, 75–109 (2017). https://doi.org/10.1016/j.ijar.2017.02.007
Suraj, Z.: Discovering concurrent process models in data: a rough set approach. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 12–19. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10646-0_2
Tarallo, E., Akabane, G.K., Shimabukuro, C.I., Mello, J., Amancio, D.: Machine learning in predicting demand for fast-moving consumer goods: an exploratory research. IFAC-PapersOnLine 52(13), 737–742 (2019). https://doi.org/10.1016/j.ifacol.2019.11.203. 9th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2019
Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L.: Industry 4.0 and Industry 5.0 - inception, conception and perception. J. Manuf. Syst. 61, 530–535 (2021). https://doi.org/10.1016/j.jmsy.2021.10.006
Zhang, C.X., Zhang, J.S., Yin, Q.Y.: A ranking-based strategy to prune variable selection ensembles. Knowl.-Based Syst. 125, 13–25 (2017). https://doi.org/10.1016/j.knosys.2017.03.031
Zong, W., Chow, Y., Susilo, W.: Interactive three-dimensional visualization of network intrusion detection data for machine learning. Future Gener. Comput. Syst. 102, 292–306 (2020). https://doi.org/10.1016/j.future.2019.07.045
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Grzegorowski, M., Janusz, A., Śliwa, G., Marcinowski, Ł., Skowron, A. (2023). Towards ML Explainability with Rough Sets, Clustering, and Dimensionality Reduction. In: Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J. (eds) Rough Sets. IJCRS 2023. Lecture Notes in Computer Science(), vol 14481. Springer, Cham. https://doi.org/10.1007/978-3-031-50959-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-50959-9_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50958-2
Online ISBN: 978-3-031-50959-9
eBook Packages: Computer ScienceComputer Science (R0)