Abstract
Our work presents the application of the rough sets method in the field of astrophysics for the analysis of observational data recorded by the Cosmic Ray Extremely Distributed Observatory (CREDO) project infrastructure. CREDO research has produced huge datasets that are not well yet studied in terms of the information they contain, including specific anomalous observations, which are of particular interest to physicists and other scientists. From the pool of data available for analysis registered under CREDO infrastructure, containing approximately \(10^7\) of events, a set of \(10^4\) of samples was selected. We have applied eigendecomposition-derived embedding limiting data to 62 dimensions (95% of variance). We have adapted rough k-means algorithm for the purpose of anomalies detection task. We have validated our approach on various configurations of adaptable parameters of the proposed algorithm. The potential anomalies retrieved with the proposed algorithm have morphological features consistent with what a human expert would expect from anomalous signals in this case. The source codes and data of our experiments are available for download to make research reproducible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aartsen, M.G., et al.: The IceCube neutrino observatory: instrumentation and online systems. J. Instrum. 12(03), P03012 (2017)
Afridi, M.K., Azam, N., Yao, J., Alanazi, E.: A three-way clustering approach for handling missing data using GTRS. Int. J. Approximate Reasoning 98, 11–24 (2018)
Allekotte, I., et al.: The surface detector system of the pierre auger observatory. Nucl. Instrum. Methods Phys. Res. Sect. A 586(3), 409–420 (2008)
Avrorin, A., et al.: Baikal-GVD: status and prospects. In: EPJ Web of Conferences, vol. 191, p. 01006. EDP Sciences (2018)
Avrorin, A., et al.: Deep-underwater Cherenkov detector in lake Baikal. J. Exp. Theor. Phys. 134(4), 399–416 (2022)
Bar, O., et al.: Zernike moment based classification of cosmic ray candidate hits from CMOs sensors. Sensors 21(22), 7718 (2021). https://doi.org/10.3390/s21227718. https://www.mdpi.com/1424-8220/21/22/7718
Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. IEEE Commun. Surv. Tutorials 16(1), 303–336 (2013)
Bibrzycki, Ł., et al.: Towards a global cosmic ray sensor network: Credo detector as the first open-source mobile application enabling detection of penetrating radiation. Symmetry 12(11), 1802 (2020). https://doi.org/10.3390/sym12111802, https://www.mdpi.com/2073-8994/12/11/1802
Cai, Z., Guan, X., Shao, P., Peng, Q., Sun, G.: A rough set theory based method for anomaly intrusion detection in computer network systems. Expert. Syst. 20(5), 251–259 (2003)
Cataldi, G., et al.: The upgrade of the Pierre auger observatory with the scintillator surface detector. Proc. Sci. 395, 251 (2022). https://doi.org/10.22323/1.395.0251
Chimphlee, W., Abdullah, A.H., Sap, M.N.M., Chimphlee, S., Srinoy, S.: Unsupervised clustering methods for identifying rare events in anomaly detection. Eng. Technol. 2, 1 (2005)
Chimphlee, W., Abdullah, A.H., Sap, M.N.M., Srinoy, S., Chimphlee, S.: Anomaly-based intrusion detection using fuzzy rough clustering. In: 2006 International Conference on Hybrid Information Technology, vol. 1, pp. 329–334. IEEE (2006)
Collaboration, P.A., et al.: The pierre auger cosmic ray observatory. Nucl. Instrum. Methods Phys. Res., Sect. A 798, 172–213 (2015)
Forgey, E.: Cluster analysis of multivariate data: efficiency vs. interpretability of classification. Biometrics 21(3), 768–769 (1965)
Hachaj, T., Koptyra, K., Ogiela, M.R.: Eigenfaces-based steganography. Entropy 23(3) (2021). https://doi.org/10.3390/e23030273, https://www.mdpi.com/1099-4300/23/3/273
Hachaj, T., Piekarczyk, M.: The practice of detecting potential cosmic rays using CMOs cameras: hardware and algorithms. Sensors 23(10), 4858 (2023). https://doi.org/10.3390/s23104858, https://www.mdpi.com/1424-8220/23/10/4858
Homola, P., Beznosko, D., Bhatta, G., Bibrzycki, Ł., et al.: Cosmic-ray extremely distributed observatory. Symmetry 12(11), 1835 (2020). https://doi.org/10.3390/sym12111835, https://www.mdpi.com/2073-8994/12/11/1835
Karbowiak, M., et al.: Small shower array for education purposes-the credo-maze project. Proc. Sci. 395, 199 (2021)
Li, Y., et al.: Classification of bgp anomalies using decision trees and fuzzy rough sets. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1312–1317 (2014). https://doi.org/10.1109/SMC.2014.6974096
Lin, T.: Anomaly detection. In: Proceedings New Security Paradigms Workshop, pp. 44–53 (1994). https://doi.org/10.1109/NSPW.1994.656226
Lin, T.: Anomaly detection. In: Proceedings New Security Paradigms Workshop, pp. 44–53. IEEE (1994)
Lingras, P., Peters, G.: Applying rough set concepts to clustering. In: Peters, G., Lingras, P., Slezak, D., Yao, Y. (eds.) Rough Sets: Selected Methods and Applications in Management and Engineering. Advanced Information and Knowledge Processing, pp. 23–37. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2760-4_2
Liu, H., Zhou, J., Li, H.: Using rough sets to improve the high-dimensional data anomaly detection method based on extended isolation forest. In: 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 231–236. IEEE (2023)
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
Mazarbhuiya, F.A.: Detecting anomaly using neighborhood rough set based classification approach (2022). Available at SSRN 4124453
Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
Peters, J.F., Skowron, A., Suraj, Z., Rzasa, W., Borkowski, M.: Clustering: a rough set approach to constructing information granules. In: Soft Computing and Distributed Processing, Proceedings of 6th International Conference, SCDP, vol. 5761 (2002)
Piekarczyk, M., Bar, O., Bibrzycki, Ł., Niedźwiecki, M., et al.: CNN-based classifier as an offline trigger for the CREDO experiment. Sensors 21(14), 4804 (2021). https://doi.org/10.3390/s21144804, https://www.mdpi.com/1424-8220/21/14/4804
Pięta, P., Szmuc, T.: Applications of rough sets in big data analysis: an overview. Int. J. Appl. Math. Comput. Sci. 31(4), 659–683 (2021)
Pryga, J., et al.: Analysis of the capability of detection of extensive air showers by simple scintillator detectors. Universe 8(8), 425 (2022)
Rawat, S.S., Polavarapu, V.A., Kumar, V., Aruna, E., Sumathi, V.: Anomaly detection in smart grid using rough set theory and k cross validation. In: 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], pp. 479–483. IEEE (2014)
Riza, L.S., et al.: Implementing algorithms of rough set theory and fuzzy rough set theory in the r package “roughsets". Inf. Sci. 287, 68–89 (2014)
Skowron, A., Dutta, S.: Rough sets: past, present, and future. Nat. Comput. 17, 855–876 (2018)
Skowron, A., Ślęzak, D.: Rough sets turn 40: From information systems to intelligent systems. In: 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS), pp. 23–34. IEEE (2022)
Stasielak, J., et al.: High-energy neutrino astronomy-baikal-gvd neutrino telescope in lake baikal. Symmetry 13(3), 377 (2021)
Taha, A., Hadi, A.S.: Anomaly detection methods for categorical data: a review. ACM Comput. Surv. (CSUR) 52(2), 1–35 (2019)
Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991). https://doi.org/10.1109/CVPR.1991.139758
Wang, P., Yao, Y.: CE3: a three-way clustering method based on mathematical morphology. Knowl.-Based Syst. 155, 54–65 (2018)
Wei, R., Mahmood, A.: Recent advances in variational autoencoders with representation learning for biomedical informatics: a survey. IEEE Access 9, 4939–4956 (2021). https://doi.org/10.1109/ACCESS.2020.3048309
Yuan, Z., Chen, B., Liu, J., Chen, H., Peng, D., Li, P.: Anomaly detection based on weighted fuzzy-rough density. Appl. Soft Comput. 134, 109995 (2023). https://doi.org/10.1016/j.asoc.2023.109995, https://www.sciencedirect.com/science/article/pii/S1568494623000133
Zeng, F., Yin, K., Chen, M., Wang, X.: A new anomaly detection method based on rough set reduction and hmm. In: 2009 Eighth IEEE/ACIS International Conference on Computer and Information Science, pp. 285–289 (2009). https://doi.org/10.1109/ICIS.2009.140
Zeng, F., Yin, K., Chen, M., Wang, X.: A new anomaly detection method based on rough set reduction and hmm. In: 2009 Eighth IEEE/ACIS International Conference on Computer and Information Science, pp. 285–289. IEEE (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hachaj, T., Piekarczyk, M., Wąs, J. (2023). Searching of Potentially Anomalous Signals in Cosmic-Ray Particle Tracks Images Using Rough k-Means Clustering Combined with Eigendecomposition-Derived Embedding. In: Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J. (eds) Rough Sets. IJCRS 2023. Lecture Notes in Computer Science(), vol 14481. Springer, Cham. https://doi.org/10.1007/978-3-031-50959-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-50959-9_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50958-2
Online ISBN: 978-3-031-50959-9
eBook Packages: Computer ScienceComputer Science (R0)