Skip to main content

Clustering Methods for Adaptive e-Commerce User Interfaces

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2023)

Abstract

Typical online shops have one interface provided to all users, regardless of their use of the shop. Meanwhile, user behavior varies and therefore different interfaces could be provided to different user groups. Various methods can be used to cluster users, including those using artificial intelligence (AI) methods. AI-based personalization allows e-commerce businesses to provide tailored recommendations to each individual customer based on preferences, purchase history, and behavior on the website. This article presents a study of the impact of an AI-based clustering method on the effectiveness of a dedicated user interface implemented and delivered to the customers of an e-shop. The first study included five methods, and two of them - agglomerative clustering and K-means clustering - were selected for detailed analysis. For both of these methods, an in-depth research was carried out and the impact of the clustering method on the quality of user clusters, as measured by the effectiveness of the dedicated interface in relation to the effectiveness of the default interface, was verified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ah-Pine, J.: An efficient and effective generic agglomerative hierarchical clustering approach. J. Mach. Learn. Res. 19(1), 1615–1658 (2018)

    MathSciNet  Google Scholar 

  2. Bansal, S., Baliyan, N.: Bi-MARS: a bi-clustering based memetic algorithm for recommender systems. Appl. Soft Comput. 97, 106785 (2020). https://doi.org/10.1016/j.asoc.2020.106785

    Article  Google Scholar 

  3. Chatterjee, R.P., Deb, K., Banerjee, S., Das, A., Bag, R.: Web mining using k-means clustering and latest substring association rule for e-commerce. J. Mech. Continua Math. Sci. 14(6), 28–44 (2019). https://doi.org/10.26782/jmcms.2019.12.00003

    Article  Google Scholar 

  4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016). https://doi.org/10.1145/2939672.2939785

  5. Chu, X., Lv, D., Zhao, D.: Personalized e-commerce website construction based on data mining. J. Phys. Conf. Ser. 1345, 362–376 (2019). https://doi.org/10.1088/1742-6596/1345/5/052038

    Article  Google Scholar 

  6. Das, P., Kar, B., Misra, S.N.: Information processing style and e-commerce website design: a clustering-based conjoint approach. J. Humanit. Soc. Sci. Res. 4, 63–74 (2022). https://doi.org/10.37534/bp.jhssr.2022.v4.nS.id1191.p63

    Article  Google Scholar 

  7. Di Fatta, D., Patton, D., Viglia, G.: The determinants of conversion rates in SME e-commerce websites. J. Retail. Consum. Serv. 41, 161–168 (2018). https://doi.org/10.1016/j.jretconser.2017.12.008

    Article  Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231, KDD 1996. AAAI (1996). https://doi.org/10.37394/232020.2022.2.17

  9. Gaikwad, D., Lamkuche, H.: Segmentation of services provided by e-commerce platforms using pam clustering. J. Phys. Conf. Ser. 1964, 1–15 (2021). https://doi.org/10.1088/1742-6596/1964/4/042036

    Article  Google Scholar 

  10. Gulzar, Y., Alwan, A.A., Abdullah, R.M., Abualkishik, A.Z., Oumrani, M.: OCA: ordered clustering-based algorithm for e-commerce recommendation system. Sustainability 15(4), 1–22 (2023). https://doi.org/10.3390/su15042947

    Article  Google Scholar 

  11. Guo, S., Zhai, R.: E-commerce precision marketing and consumer behavior models based on IoT clustering algorithm. J. Cases Inf. Technol. 24(5), 1–21 (2022). https://doi.org/10.4018/JCIT.302244

    Article  Google Scholar 

  12. Ji, C., Wang, K., Chen, X.: Design of e-commerce personalized service model based on web mining classification technique. In: 2010 International Conference on Internet Technology and Applications (2010). https://doi.org/10.1109/ITAPP.2010.5566332

  13. Kamthania, D., Pahwa, A., Madhavan, S.S.: Market segmentation analysis and visualization using k-mode clustering algorithm for e-commerce business. J. Comput. Inf. Technol. 26(1), 57–68 (2018). https://doi.org/10.20532/cit.2018.1003863

    Article  Google Scholar 

  14. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (1990)

    Book  Google Scholar 

  15. Kopel, M., Sobecki, J., Wasilewski, A.: Automatic web-based user interface delivery for SOA-based systems. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS (LNAI), vol. 8083, pp. 110–119. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40495-5_12

    Chapter  Google Scholar 

  16. Li, Y., Qi, J., Chu, X., Mu, W.: Customer segmentation using k-means clustering and the hybrid particle swarm optimization algorithm. Comput. J. 66(4), 941–962 (2022). https://doi.org/10.1093/comjnl/bxab206

    Article  Google Scholar 

  17. Liu, L.: e-commerce personalized recommendation based on machine learning technology. Mob. Inf. Syst. 2022, 1–11 (2022). https://doi.org/10.1155/2022/1761579

    Article  Google Scholar 

  18. McInnes, L., Healy, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv e-prints (2018)

    Google Scholar 

  19. Patel, E., Kushwaha, D.S.: Clustering cloud workloads: K-means vs gaussian mixture model. Procedia Comput. Sci. 171, 158–167 (2020). https://doi.org/10.1016/j.procs.2020.04.017

    Article  Google Scholar 

  20. Punhani, R., Arora, V., Sabitha, A.S., Shukla, V.K.: Segmenting e-commerce customer through data mining techniques. J. Phys. Conf. Ser. 1714, 1–11 (2020). https://doi.org/10.1088/1742-6596/1714/1/012026

    Article  Google Scholar 

  21. Rana, C., Jain, S.K.: An extended evolutionary clustering algorithm for an adaptive recommender system. Soc. Netw. Anal. Min. 4, 1–13 (2014). https://doi.org/10.1007/s13278-014-0164-x

    Article  Google Scholar 

  22. Rao, T.R.K., Knah, S.A., Begum, Z., Divakar, C.: Design of e-commerce personalized service model based on web mining classification technique. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research (2013). https://doi.org/10.1109/ICCIC.2013.6724233

  23. Shaik, I., Nittela, S.S., Hiwarkar, T., Nalla, S.: K-means clustering algorithm based on e-commerce big data. Int. J. Innov. Technol. Explor. 8(11), 1–5 (2019). https://doi.org/10.35940/ijitee.K2121.0981119

    Article  Google Scholar 

  24. Shi, Y., Li, X., ZhouGong, S., Li, X., Wang, H.: Precise marketing classification of agricultural products fore-commerce live broadcast platform using clustering. Mob. Inf. Syst. 2022(03), 1–8 (2022). https://doi.org/10.1155/2022/1062938

    Article  Google Scholar 

  25. Singh, H., Kaur, P.: An effective clustering-based web page recommendation framework for e-commerce websites. SN Comput. Sci. 2, 1–20 (2021). https://doi.org/10.1007/s42979-021-00736-z

  26. Sudhamathy, G., Venkateswaran, J.: Fuzzy temporal clustering approach for e-commerce websites. Int. J. Eng. Technol. 4(3), 119–132 (2012)

    Google Scholar 

  27. Wu, Y., Li, Y., Qian, R.: NE-UserCF: collaborative filtering recommender system model based on NMF and E2LSH. Int. J. Perform. Eng. 13(5), 610–619 (2017). https://doi.org/10.1088/1742-6596/1714/1/012026

    Article  Google Scholar 

  28. Wu, Z., Jin, L., Zhao, J., Jing, L., Chen, L.: Research on segmenting e-commerce customer through an improved k-medoids clustering algorithm. Comput. Intell. Neurosci. 2022, 1–10 (2022). https://doi.org/10.1155/2022/9930613

    Article  Google Scholar 

  29. Xu, Q., Wang, J.: A social-aware and mobile computing-based e-commerce product recommendation system. Comput. Intell. Neurosci. 2022, 1–8 (2022). https://doi.org/10.1155/2022/9501246

    Article  Google Scholar 

  30. Yang, F.: A hybrid recommendation algorithm - based intelligent business recommendation system. J. Discrete Math. Sci. Cryptogr. 21(6), 1317–1322 (2018). https://doi.org/10.1080/09720529.2018.1526408

    Article  Google Scholar 

  31. Yang, S., Hou, Y.: A clustering algorithm for cross-border e-commerce customer segmentation. PROOF 2, 138–145 (2022). https://doi.org/10.37394/232020.2022.2.17

    Article  Google Scholar 

  32. Zhang, Q.: Construction of personalized learning platform based on collaborative filtering algorithm. Wirel. Commun. Mob. Comput. 2022, 1–9 (2022). https://doi.org/10.1155/2022/5878344

    Article  Google Scholar 

  33. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. ACM SIGMOD Rec. 25(2), 103–114 (1996). https://doi.org/10.1145/235968.233324

    Article  Google Scholar 

  34. Zhang, Y., et al.: Gaussian mixture model clustering with incomplete data. ACM Trans. Multimedia Comput. Commun. Appl. 17(1s), 1–14 (2021). https://doi.org/10.1145/3408318

    Article  Google Scholar 

  35. Zhao, Y., He, Y., Wutao, Z.: Personalized clustering method of cross-border e-commercetopics based on art algorithm. Math. Probl. Eng. 2, 1–7 (2022). https://doi.org/10.1155/2022/8190544

    Article  Google Scholar 

  36. Zhu, X., Li, Y., Wang, J., Fu, J.: Automatic recommendation of a distance measure for clustering algorithms. ACM Trans. Knowl. Discov. Data 15, 1–22 (2020). https://doi.org/10.1145/3418228

    Article  Google Scholar 

  37. Öner, S.C., Öztayşi, B.: An interval type 2 hesitant fuzzy MCDM approach and a fuzzy C means clustering for retailer clustering. Soft. Comput. 22, 4971–4987 (2018). https://doi.org/10.1007/s00500-018-3191-0

    Article  Google Scholar 

Download references

Acknowledgements

Project co-funded by the National Centre for Research and Development under the Sub-Action 1.1.1 of the Operational Programme Intelligent Development 2014-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Wasilewski .

Editor information

Editors and Affiliations

Ethics declarations

Data Availability

The datasets used during the current study are available from authors on reasonable request.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wasilewski, A., Przyborowski, M. (2023). Clustering Methods for Adaptive e-Commerce User Interfaces. In: Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J. (eds) Rough Sets. IJCRS 2023. Lecture Notes in Computer Science(), vol 14481. Springer, Cham. https://doi.org/10.1007/978-3-031-50959-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50959-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50958-2

  • Online ISBN: 978-3-031-50959-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics