Skip to main content

Handling Intra-class Dissimilarity and Inter-class Similarity for Imbalanced Skin Lesion Image Classification

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14481))

Included in the following conference series:

  • 181 Accesses

Abstract

Medical image analysis based on deep learning technology has recently attracted much attention. However, it is inappropriate to directly employ the methods that perform well in computer vision. For skin lesion images, the differences between various lesions may be relatively small, and the existing commonly used datasets are class-imbalanced. In this paper, we propose a new method with an augmented loss function that makes use of contrastive information and label information. The proposed method tries to enhance the intra-class similarity and inter-class dissimilarity in the learning procedure. We also apply oversampling on the original data to tackle the imbalance issue. Extensive experiments are conducted on the ISIC2018 and ISIC2019 datasets. The results have demonstrated that, in terms of F1-score and AUC, the proposed method has outperformed the compared methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z.J., Miao, D.Q.: Sequential end-to-end network for efficient person search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, pp. 2011–2019 (2021)

    Google Scholar 

  2. Dou, S.G., Zhao, C.R., Jiang, X.Y., et al.: Human co-parsing guided alignment for occluded person re-identification. IEEE Trans. Image Process. 32, 458–470 (2022)

    Article  Google Scholar 

  3. Chen, X.X., Wang, X.M., Zhang, K., et al.: Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 79, 102444 (2022)

    Article  Google Scholar 

  4. Gao, Z.Y., Hong, B.Y., Li, Y., et al.: A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images. Med. Image Anal. 83, 102652 (2023)

    Article  Google Scholar 

  5. Georgios, D., Fernando, B., Felix, L.: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 465, 1–20 (2018)

    Article  Google Scholar 

  6. Sivapuram, A.K., Ravi, V., Senthil, G., et al.: VISAL-A novel learning strategy to address class imbalance. Neural Netw. 161, 178–184 (2023)

    Article  Google Scholar 

  7. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  9. Mullick, S.S., Datta, S., Das, S.: Generative adversarial minority oversampling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1695–1704 (2019)

    Google Scholar 

  10. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the International Joint Conference on Artificial Intelligence, vol. 17, no. 1, pp. 973–978 (2001)

    Google Scholar 

  11. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  12. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  13. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1735–1742 (2006)

    Google Scholar 

  14. Binder, M., Schwarz, M., Winkler, A., et al.: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch. Dermatol. 131(3), 286–291 (1995)

    Article  Google Scholar 

  15. Henning, J.S., Dusza, S.W., Wang, S.W., et al.: The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)

    Article  Google Scholar 

  16. Ballerini, L., Fisher, R.B., Aldridge,B., et.al.: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. In: Celebi, M., Schaefer, G. (eds.) Color Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol. 6, pp. 63–86. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-5389-1_4

  17. Marques, J.S., Barata, C., Mendonca, T.: On the role of texture and color in the classification of dermoscopy images. In: Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4402–4405 (2012)

    Google Scholar 

  18. Murugan, A., Nair, S.A.H., Kumar, K.: Detection of skin cancer using SVM, random forest and kNN classifiers. J. Med. Syst. 43(8), 1–9 (2019)

    Article  Google Scholar 

  19. Hameed, N., Hameed, F., Shabut, A., et al.: An intelligent computer-aided scheme for classifying multiple skin lesions. Computers 8(3), 62 (2019)

    Article  Google Scholar 

  20. Amelard, R., Wong, A., Clausi, D.A.: Extracting morphological high-level intuitive features (HLIF) for enhancing skin lesion classification. In: Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4458–4461 (2012)

    Google Scholar 

  21. Wahba, M.A., Ashour, A.S., Guo, Y., et al.: A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification. Comput. Methods Programs Biomed. 165, 163–174 (2018)

    Article  Google Scholar 

  22. Haenssle, H.A., Fink, C., Schneiderbauer, R., et al.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  23. Barata, C., Celebi, M.E., Marques, J.S.: Explainable skin lesion diagnosis using taxonomies. Pattern Recogn. 110, 107413 (2021)

    Article  Google Scholar 

  24. Jojoa Acosta, M.F., Caballero Tovar, L.Y., Garcia-Zapirain, M.B., et al.: Melanoma diagnosis using deep learning techniques on dermatoscopic images. BMC Med. Imaging 21(1), 1–11 (2021)

    Article  Google Scholar 

  25. Adepu, A.K., Sahayam, S., Jayaraman, U., et al.: Melanoma classification from dermatoscopy images using knowledge distillation for highly imbalanced data. Comput. Biol. Med. 154, 106571 (2023)

    Article  Google Scholar 

  26. He, K.M., Fan, H.Q., Wu, Y.X., et al.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  27. Peng, Z., Tian, S.W., Yu, L., et al.: Semi-supervised medical image classification with adaptive threshold pseudo-labeling and unreliable sample contrastive loss. Biomed. Signal Process. Control 79, 104142 (2023)

    Article  Google Scholar 

  28. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  29. Codella, N.C.F., Gutman, D., Celebi, M.E., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging, pp. 168–172 (2018)

    Google Scholar 

  30. Combalia, M., Codella, N.C.F., Rotemberg, V., et al.: BCN20000: dermoscopic lesions in the wild. arXiv:1908.02288 (2019)

  31. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

    Article  Google Scholar 

  32. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments that help improve the manuscript. This research was supported by the National Nature Science Foundation of China (Grant No. 62076040), the Natural Science Foundation of Shanghai (Grant No. 22ZR1466700), and the Foundation of Shanghai University of Medicine & Health Sciences (Grant No. A1-2601-23-311007-25, E1-0200-23-201009-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, S., Zhang, Z., Yang, J. (2023). Handling Intra-class Dissimilarity and Inter-class Similarity for Imbalanced Skin Lesion Image Classification. In: Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J. (eds) Rough Sets. IJCRS 2023. Lecture Notes in Computer Science(), vol 14481. Springer, Cham. https://doi.org/10.1007/978-3-031-50959-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50959-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50958-2

  • Online ISBN: 978-3-031-50959-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics