arXiv:2310.02372v1 [cs.CL] 3 Oct 2023

ProtoNER: Few shot Incremental Learning for
Named Entity Recognition using Prototypical
Networks

Ritesh Kumar, Saurabh Goyal, Ashish Verma**, and Vatche Isahagian

IBM Research, USA
kumar .ritesh@ibm.com, saurabh.goyall@ibm.com, draverma@amazon.com,
vatchei@ibm.com

Abstract. Key value pair (KVP) extraction or Named Entity Recog-
nition(NER) from visually rich documents has been an active area of
research in document understanding and data extraction domain. Sev-
eral transformer based models such as LayoutLMv2[I], LayoutLMv3[2],
and LiLT[3] have emerged achieving state of the art results. However,
addition of even a single new class to the existing model requires (a)
re-annotation of entire training dataset to include this new class and (b)
retraining the model again. Both of these issues really slow down the
deployment of updated model.

We present ProtoNER: Prototypical Network based end-to-end KVP
extraction model that allows addition of new classes to an existing model
while requiring minimal number of newly annotated training samples.
The key contributions of our model are: (1) No dependency on dataset
used for initial training of the model, which alleviates the need to retain
original training dataset for longer duration as well as data re-annotation
which is very time consuming task, (2) No intermediate synthetic data
generation which tends to add noise and results in model’s performance
degradation, and (3) Hybrid loss function which allows model to retain
knowledge about older classes as well as learn about newly added classes.
Experimental results show that ProtoNER finetuned with just 30 sam-
ples is able to achieve similar results for the newly added classes as that
of regular model finetuned with 2600 samples.

Key words: Business Document Information Extraction, Few Shot
Class Incremental Learning (FSCIL), Named Entity Recognition (NER),
Key Value Pair Extraction (KVP), Token Classification, Prototypical
Networks

1 Introduction

Business processes provide a structured framework for enterprises to do work.
They define tasks, their executors, and capture dependencies as well as provide
logging and tracking capabilities [27]. They also align with company policies and

** Work done while author was working at IBM Research.

kumar.ritesh@ibm.com
saurabh.goyal1@ibm.com
draverma@amazon.com
vatchei@ibm.com

2 Ritesh Kumar et al.

compliance with governmental regulations. Business process tasks are typically
associated with unstructured data in the form of documents, which contain in-
formation deemed critical to the successful execution of the business process. For
example, a loan application will be associated with multiple documents contain-
ing name, salary, credit score etc. of an individual. In the age of digital transfor-
mation, where enterprises are focusing on augmenting business processes with
Artificial Intelligence [25] 26] 28], automating the extraction of knowledge from
these rich documents such as loan applications, invoices, purchase orders, and
utility bills, understanding business documents is critical because Incomplete,
and Inaccurate information can lead to process execution delay and loss of rev-
enue. Most recently, key-value pairs extraction has received significant attention
because of its ability to influence the automation of several downstream tasks
and affect the completion time of the business processes.

Traditional approaches such as template matching and region-segmentation
based models [5] [6] [7, 8] have been commonly used in industry for KVP extrac-
tion as they provide flexibility to train and deploy the models at much faster
pace. Unfortunately, these models only work for the documents that they have
observed during model training time and even a slight change in the layout of
the document results in poor performance [9].

Deep learning based models such as LayoutLMv3 [2] and FormNet [4] achieve
state of the art results and work very well even for the unseen documents. Such
properties of deep learning models have compelled their industry wide rapid
adoption. Unfortunately, these models are not able to predict a new set of key
classes for which the model is not explicitly trained. With the ever-evolving
nature of form like documents, it becomes crucial for such models to support
addition of new key classes on top of existing ones in a fairly simplified and
straight forward manner. With the goal of addressing this issue, in this paper, we
adopt Prototypical Network[I2] based model architecture to support the addition
of new key classes to an already trained model. Prototypical networks have been
widely studied for several computer vision related tasks but their inclusion in
language related tasks remains limited. This is mainly due to the fact that several
existing machine learning based algorithms can be used to extract features from
the images pertaining to a class and be treated as prototype whereas there
is not a clear or equivalent approach readily available that can be exploited to
create prototypes in the language domain. We present a novel approach to create
prototypes corresponding to different classes in the language domain that uses
only a few samples to facilitate few shot class-incremental learning(FSIL), while
avoiding the model’s Catastrophic Forgetting [16] problem.

2 Problem Formulation

As described earlier, with rapid digitization of business workflows, enterprises
are expected to update their models frequently with the capability of extracting
more and more key value pairs from visually rich documents. The problem can
be illustrated using Figure[I] Consider model Mj trained to extract 4 key classes

Few Shot Incremental Learning for NER 3

(PO Number, PO Amount, Currency, and Customer Name) is currently being
used by an enterprise to automate several downstream tasks (e.g. 3-way matching
[24]). However, the enterprise needs to further extract 3 more classes (PO Date,
Country, and Bill To Address) along with the previous 4 keys to further extend
the functionality. Therefore, the resulting new model M; needs to support 7 key
classes in total instead of just 4. Formally, we define the problem as follows:

Definition 1. Given a set of N classes, a Model My, is trained on K classes
where K C N. Train a new model My, ; trained on K +J classes, where J C N,
KNnJ=0, and |J| + |K| < |N].

Addition of new Key classes to already trained Model

Current Deployed Model Required Enh Exp d Model
PO Number PO Number

Er— PO Amount
Currency

Currency
Customer Name
Customer Name

Fig. 1: Current deployed model supports extracting 4 classes. How to enhance the
understanding of the model to support three additional classes.

In a conventional training setup, adding new classes requires re-annotation
of the entire dataset to incorporate these new classes followed by retraining the
model, which is a very slow and time consuming process because of its reliance
on human annotators. This is further complicated by the fact that the original
training dataset may not be available due to the data retention policies adopted
by the organization. Our approach utilizes a handlful of newly annotated samples
to facilitate few shot class-incremental learning(FSCIL)[20].

Note that adding new classes to an already trained model may introduce a
Catastrophic Forgetting[I6] problem where model tends to forget the knowledge
acquired about older classes while learning about new classes. To alleviate this
problem, we incorporate a hybrid loss function that combines cross entropy loss
and cosine similarity loss. Cosine similarity loss is only applied to the older classes
during addition of new class which forces the model to retain the knowledge
about older classes whereas cross entropy loss allows the model to learn about
new classes at the same time. It also helps the network not to overfit on the
few-shot instances as well as not becoming biased to the base classes.

4 Ritesh Kumar et al.

3 ProtoNER

3.1 Model Architecture

Transformer based NLP models such as LayoutLMv2[1] and LayoutLMv3[2] have
shown to achieve state of the art results for KVP extraction on public datasets
like CORDJ[I3] and FUNSD[I4] by leveraging text, layout, and image modalities.
In this work, we leverage the LayoutLMv2[I] model architecture as the basis for
our modified prototypical network based architecture. Note that our architecture
is generic enough to support other multi-modal architectures that are capable
of performing KVP extraction such as DocFormer [I0] or TiLT [11].

Classification Layer
Model 4 3Classes: C;— C3

Input
(Data & Label)

Fig. 2: Converting LayoutLMv2 to Prototypical Network Architecture

Prototypes

Figure [2|illustrates the overall architecture. For the sake of simplicity, all the
transformer model blocks/layers are encapsulated as “Hidden Layers” block and
only the last hidden layer(LHL) and classification layer are depicted. Though
LayoutLMv2 model supports sequence length of up to 512 tokens and classifies
each token, we have shown the classification head only for one token here and
named it as “classification layer”.

To convert the LayoutLMv2 model into prototypical network architecture,
last hidden layer of the model is leveraged during training as well as inference.
While training the model, if a token with ground truth label C gets classified
correctly by the classification layer, the last hidden layer representation for that
token is saved as a prototype for key class C; under the prototype pool as shown
in figure|2] In a similar fashion, prototypes corresponding to all of the classes are
saved during training. Multiple prototypes per class are saved to capture better
diversity within the class prototypes. The number of prototypes per class to be
saved is a hyper parameter. The prototypes are saved only during the last epoch
of the training to allow the model learn and achieve good accuracy across all key
classes before saving the prototypes. The prototypes are only saved when the
model classifies the token correctly i.e the ground label for the token matches
the predicted label. Each prototype is a vector of length equal to the length of
the model’s last hidden layer.

When the trained model is used for inferencing, the cosine similarity score
is computed between the LHL representation of the token against all the saved

Few Shot Incremental Learning for NER 5

prototypes from the pool and the label for the given token is derived by per-
forming K-Nearest Neighbour search based on the computed cosine similarity
scores. Doing the K-Nearest neighbour search from prototypes pool completely
eliminates the need to have a classification layer.

3.2 Training Procedure

Model Training Steps

Base Training Classification Layer 1. Save LHLas class
4 3 Classes: C,~ C; Prototypes
at last training epoch

Prototypes Pool

2. Save only when model
Classifies correctly

3. Save multiple
Prototypes per
class for variance

i

Incremental Training (Adding new class)

‘ .
(Data & Label)
. Cosine Similarity
s
(Only for Older Classes)

Reset Classification Layer

1. Cos. Sim. forces Model
toretrain knowledge of
older classes

2. Cross Entropy forces
Model to learn about new
class

3. Save prototypes only
for new class during last
training epoch

o

Fig. 3: Overall Model Training Process

Figure [3] highlights the overall training procedure for our model, which con-
sists of two steps: Base Training, and Incremental Training. Base Training con-
sists of training the model for the first N classes (N+1 if we include “Other” class)
and incremental training consists of adding new class to the model achieved after
base training.

During the base training, the model is trained for N classes as per the procedure
described in the previous section. The trained model weights achieved after the
base training is termed as base model. Multiple prototypes are saved for all of
the N classes to create the prototypes pool.

During the incremental training phase to add new class to the base model, the
prototypes saved for the older N classes are carried forward as is and not up-
dated at any point of time during the incremental training. Only the prototypes
pertaining to the “Other” class are discarded before initiating the incremental
training. The classification layer of the base model is reset to reflect N+1 classes.
Using only the few newly annotated samples (annotated for n+1 key classes) and
trained base model weights, the model is finetuned further to acquire knowledge
about this newly added class. Our hybrid loss function is used only during this
incremental training phase. For the tokens pertaining to the older key classes,
the cosine similarity loss is computed between the LHL representation for the to-
ken and prototypes for the respective key class from the prototypes pool. Since
multiple prototypes per key class are saved, we compute the cosine similarity
loss between LHL representation of the token and each prototype for that key

6 Ritesh Kumar et al.

class to derive the average loss. This loss is simply added linearly to the cross
entropy loss computed for the same token. Other possibility could have been to
associate learnable parameters with both of the losses and let the model learn
them during training. We did not explore this possibility in this work.

This way the model is forced to retain LHL representation for the older key
classes as similar to the original state as possible. For the tokens pertaining to
newly added key class, only the cross entropy loss is computed. Multiple pro-
totypes are saved during the last epoch for the newly added class as well as
the “Other” class. The same procedure can be repeated again in the future to
add additional key classes. Note that more than one new class can be added
concurrently during the same incremental training phaseﬂ

4 Experimental Results

4.1 Dataset

The dataset used for the analysis contains 2742 purchase orders obtained from
various sources and consists of about 73 unique layout templates. 2600 samples
are used for training and 142 for evaluation. Each document is annotated with
a subset of the 10 pre-defined key classes. Table [lists these key classes along
with their respective frequencies i.e. how many times these key classes appear in
the dataset. The annotations contain 2-D coordinates and the key class label for
the values corresponding to the pre-defined keys (not the words corresponding to
keys themselves). Since any document such as purchase order or invoice generally
contains additional text that does not pertain to any of the key classes, we also
include an “Other” class along with the 10 pre-defined key classes to refer to
those remaining words in the document. Note that all the annotations are at
field level rather than at the word level as illustrated in Figure [4]

|Key Name Frequency
1 |PO NUMBER 2377
2 |PO AMOUNT 1384
3 |CUSTOMER NAME 1168
4 [COUNTRY 1033
5 |CURRENCY 1311
6 |BILL-TO ADDRESS 1334
7 |BILL-TO CUSTOMER NAME 1030
8 |SHIP-TO ADDRESS 1390
9 |[SHIP-TO CUSTOMER NAME 1050
10|LOGO CUSTOMER NAME 1631

Table 1: Frequency of keys present in Purchase Order dataset

3 The addition of multiple classes sequentially (one at a time) vs. all at same time
results in similar accuracy.

Few Shot Incremental Learning for NER 7

In order to process the data, each document is first passed through an Optical
Character Recognition (OCR) engine to extract the words and their respective
bounding box coordinates. Since annotations are done at field level and OCR
extracts the text and corresponding bounding boxes at word level, we split the
annotations at word level to align it with the OCR output. Both OCR output
and pre-processed annotations are required for training the model for KVP ex-
traction.

PURCHASE ORDER
ABC Inc.
PO Number
et FROM Customer Name PO number >‘ Us-001]
Repair Date 11/02/2019
C 1912 Harvest Lane
New York, NY 12210
VENDOR SHIP TO
John Smith John Smith Ship To Address
2 Court Square 3787 Pineview Drive
New York, NY 12210 Cambridge, MA 12310
Qry DESCRIPTION UNIT PRICE AMOUNT
1 Front and rear brakes 100.00 100.00
Sales Tax 6.25% 6.25
PO Amount
| TOTAL $106.25 | N

Fig. 4: Purchase order sample showing annotated field level key labels (i.e. name, and
location) of Customer Name, PO Number, Ship To Address, and PO Amount along
with their values. The list of text in the green boxes represents the word level OCR
output obtained for each of the field level annotations.

4.2 Evaluation

In order to evaluate our ProtoNER model, we follow the 2-step procedure de-
scribed in the earlier section to train our model. In the first step, we train the
pre-trained LayoutLMv2 [I] model on 2600 training samples annotated with
only 4-classes as shown in Table [2| In order to do that, we modify the original
training data annotations and replace all the key classes except the original 4
key classes with the “Other” class. The model is trained for 100 epochs with
2e-5 learning rate and 8 batch size. At the end of this first step of training, we
save 50 prototypes for each of the 4 key classes along with the model weights.
The decision to save 50 prototypes per class was taken based on the empirical
analysis.

In second step, we further fine-tune the model trained in the previous step with
just 30 samples annotated with all the 10 key classes. The training parameters
used for this step are: train epochs=100, learning rate=5e-6, and batch size =8.
This 2-step training regime mimics the practical industrial scenario where the
initial model is usually trained on large dataset with small number of key classes

8 Ritesh Kumar et al.

and the model needs to be updated to cater for future requirements i.e. identify
new key classes but with limited training data.

Base Model Training Incremental Model Training
Train Samples 2600 Train Samples 30
Keys 4 Keys 6
Prototypes per class 50 Prototypes per class 50
Test samples 142 Test samples 142
Key Class Prec |Rec |F1
PO Number 0.87 10.89 |0.88
Logo Cust Name |0.90 [0.76 [0.81
Key Class Prec |Rec |F1 Ship To Addr 0.87 10.78 |0.82
PO Number 0.87 10.79 [0.83 Ship To Cust Name|0.76 [0.88 [0.81
Logo Cust Name |0.87 [0.79 [0.83 Bill To Addr 0.63 |0.85 (0.72
Ship To Addr 0.83 [0.85 |0.84 Bill To Cust Name [0.74 |0.79 |0.76
Ship To Cust Name|0.76 |0.87 |0.81 Country 0.68 10.86 |0.76
Currency 0.68 (0.90 (0.78
(a) Base model accuracy Customer Name [0.67 |0.73 [0.69
PO Amount 0.76 |0.77 |0.76

(b) Incremental model accuracy

Table 2: ProtoNER training samples, keys, and model results are shown for base
training (under subtable (a))) and incremental training (under subtable (b])). Common
key classes across both models are highlighted in blue color.

Table[2]illustrates the Precision, Recall, and F1 scores achieved for key classes
by ProtoNER. Table shows the scores for the base model trained with 4
key classes and Table shows the scores for the base model finetuned further
to support 10 key classes. From the Table [2] it can be observed that the model
is able to perform well for the newly added keys even after training with only 30
newly annotated samples. The hybrid loss function is able to force the model to
retain the knowledge about older classes as well as gain knowledge about new
classes. Also, the scores improve for the older keys after addition of new keys.
The reason behind this improvement is that the false positives and false nega-
tives for the 4 key classes get spread over 10 key classes now instead of 4.
The rationale behind how model is able to learn about new key classes from
only few samples can be attributed to the sub-clustering being performed by the
model inherently during the base training itself. Even though the words pertain-
ing to left out 6 key classes are labeled as “Other” during the base training, the
model inherently forms sub-clusters under the parent “Other” class umbrella
for these 6 key classes. Exposing the model with few samples containing new
key classes during incremental stage allows the mapping of such already formed
sub-clusters to these new key classes. Meihan et al. [23] have reported similar
observations under their few shot work.

Few Shot Incremental Learning for NER 9
Training Attributes

ProtoNER LayoutLMv2-10C LayoutLMv2-4C-10C
Base train samples 2600|Train samples 2600| Train samples 2600
Base key classes 4 Base key classes 10 |Base key classes 4
Test samples 142 |Test samples 142 |Test samples 142
Incremental samples 30 Incremental samples 30
Incremental key classes 6 Incremental key classes 6

Table 3: Training configuration for ProtoNER, LayoutLMv2-10C, and LayoutLMv2-
4C-10C models. Both ProtoNER and LayoutLMv2-4C-10C are first trained for 4 key
classes using 2600 samples followed by incremental training for additional 6 classes

using 30 samples. .
Results Comparison

ProtoNER LayoutLMv2-10C || LayoutLMv2-4C-10C
Key Classes Prec | Rec | F1 || Prec | Rec| F1 || Prec | Rec F1
PO Number 0.87 | 0.89 | 0.88 || 0.88 | 0.82 | 0.84 || 0.77 | 0.55 | 0.64
Logo Cust Name 0.90 | 0.76 | 0.81 || 0.88 | 0.82 |0.84 || 0.77 | 0.46 | 0.57
Ship To Addr 0.87 | 0.78 | 0.82 || 0.84 | 0.81 | 0.82 || 0.45 | 0.42 | 0.43
Ship To Cust Name || 0.76 | 0.88 | 0.81 || 0.77 | 0.89 | 0.82 || 0.42 | 0.39 | 0.40
Bill To Addr 0.63 | 0.85 | 0.72 || 0.81 | 0.83 |0.81 1 0.39 | 0.50 | 0.44
Bill To Cust Name 0.74 1 0.79 | 0.76 || 0.80 | 0.84 | 0.81 || 0.43 | 0.49 | 0.46
Country 0.68 | 0.86 | 0.76 || 0.82 | 0.85 | 0.83 || 0.62 | 0.64 | 0.62
Currency 0.68 | 0.90 | 0.78 || 0.80 | 0.93 | 0.86 || 0.72 | 0.78 | 0.75
Customer Name 0.67 | 0.73 | 0.69 || 0.73 | 0.79 | 0.75 || 0.50 | 0.69 | 0.58
PO Amount 0.76 | 0.77 | 0.76 || 0.86 | 0.88 | 0.86 || 0.64 | 0.62 | 0.62

Table 4: Results comparison between ProtoNER, LayoutLMv2-10C, and LayoutLMv2-
4C-10C models obtained for 142 test samples. LayoutLMv2-10C model is trained for
all 10 key classes using 2600 samples. LayoutLMv2-4C-10C and ProtoNER models are
first trained for 4 key classes using 2600 samples followed by incremental addition of
6 key classes using only 30 samples. F1 scores for incremental key classes for both
ProtoNER and LayoutLMv2-4C-10C models are highlighted in red color.

4.3 Comparison against LayoutLMv2 model

We also trained 2 baseline LayoutLMv2 models to compare against our model.
We used the original implementation source code provided by the authors
of LayoutLMv2 here: https://github.com/microsoft/unilm/tree/master/
layoutlmv2. The first baseline model LayoutLMv2-10C was trained by fine-
tuning the pre-trained LayoutLMv2 model on 2600 training samples annotated
with all the 10 key classes. The model is trained for 100 epochs with 2e-5 learn-
ing rate and 8 batch size.
The second baseline model LayoutLMv2-4C-10C was trained in 2 steps. It
was first trained for 4 key classes using 2600 samples followed by finetuning fur-
ther for all 10 key classes using only 30 samples. It was trained for 100 epochs
with 2e-5 learning rate and 8 batch size followed by finetuning for 10 key classes
for 100 epochs, 5e-6 learning rate and 8 batch size. All the models were trained
on single V100 GPU.

Table [3] lists the overall training configuration for all of the 3 models. Ta-
ble [4] compares the precision, recall and Fl-score for all the 10 key classes

https://github.com/microsoft/unilm/tree/master/layoutlmv2
https://github.com/microsoft/unilm/tree/master/layoutlmv2

10 Ritesh Kumar et al.

for our model(ProtoNER) with LayoutLMv2-10C baseline model. It can be
observed that for the original 4 key classes (PO Number, ShipToAddr, Ship-
ToCustName, and LogoCustName) the Fl-score of our model is compara-
ble to the LayoutLMv2-10C model with 3% drop only for 1 specific key
class(LogoCustName). For the remaining 6 key classes, our model is able to
learn only with the help of 30 new samples. The results suggest that the hybrid
loss function is able to force the model to retain the knowledge about the origi-
nal 4 key classes during the incremental training phase as well as achieves about
90% of the LayoutLMv2-10C model’s accuracy for the newely added key classes
with just 30 samples.

Table [4] also shows the comparison of precision, recall and F1-score between
our model(ProtoNER) and LayoutLMv2-4C-10C model. It can be observed that
our model performs significantly better than the LayoutLMv2-4C-10C model
on original 4-classes with gains in Fl-score as high as 40% for some of the key
classes and 32% on average. This is due to the fact that our model is able to retain
the knowledge about the original 4-classes in the form of saved prototypes and
hybrid loss function while LayoutLMv2-4C-10C model suffers from catastrophic
forgetting problem. For the newly added 6 classes, layoutLMv2-4C-10C model
undergoes severe over-fitting due to the small dataset size while our model is
able to generalize better due to hybrid loss function.

5 Related Work

The adoption of language models (LM) really demands the flexibility of contin-
ual and incremental learning. In context of incremental learning for KVP/NER,
Chen and Moschitti [19] present an approach for transferring knowledge from
one model trained on specific dataset to a new model trained on another dataset
containing new keys/classes. Their overall model architecture tries to learn the
differences between the source and target label distribution with the help of neu-
ral adapter. Greenberg et al. [22] use marginal likelihood training to strengthen
the knowledge acquired by their model from different available datasets while
filling in missing labels for each dataset to align them. Both of these models
require availability of more than one annotated datasets and also does not in-
corporate the few shot training aspect. Huang et al. [I5] present a comprehensive
study on the few shot training for NER task and mention about noisy supervised
approach, knowledge distillation based teacher student model and prototypical
networks based model.

On one hand, incremental learning aspect is being explored to allow addition
of new classes to already trained model, on the other hand, different Few Shots
based techniques are being developed to train model with minimal number of an-
notated examples using transfer learning. However, very limited work has been
carried which exploits both Few Shot and Incremental Learning at the same
time specifically for NER task.

Monaikul et al. [I8] present model for incremental learning for NER task which
follows teacher student architecture. Their approach passes the data through

Few Shot Incremental Learning for NER 11

trained base model and considers the predicted labels as the ground truth label
during the incremental training phase. It adds impurities to the training data
since all the inaccurate predictions by the base model get passed to the incre-
mental training. The complex inference head also requires sophisticated rules
to eventually derive the final prediction which may induce/lead to inaccuracies.
Zhou et al.[I7] present meta learning based approach which relies on synthet-
ically generated data. The model presented by Cheraghian et al.[21] few shot
class incremental learning corresponds to vision domain where each sample con-
tains data point pertaining to only one class and therefore, this model cannot
be leveraged as is for the KVP task.

6 Conclusion

Our approach demonstrates how a prototypical network architecture inspired
model setup with hybrid loss function can be used to incorporate real-life con-
straints and still achieve similar results as that of regular model. It provides a
solution to add new keys on top of already trained model if and when required in
the future with very limited data. It also eliminates the need to retain the orig-
inal training dataset that could be a challenge in real-life scenario due to data
retention policy adopted by different organizations. The overall setup provides
flexibility to deploy such models in automated environment where end user can
decides to add new keys with significantly less efforts.

References

1. YangXu,YihengXu,Tengchaol.v,LeiCui,FuruWei,GuoxinWang, YijuanLu, Dinei Flo-
rencio, Cha Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou. 2021. Lay-
outLMv2: Multi-modal Pre-training for Visually-rich Document Understand- ing.
In ACL.

2. Huang, Yupan, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. ”Layoutlmv3:
Pre-training for document ai with unified text and image masking.” In Proceedings
of the 30th ACM International Conference on Multimedia, 2022.

3. Wang J, Jin L, Ding K. Lilt: A simple yet effective language-independent
layout transformer for structured document understanding. arXiv preprint
arXiv:2202.13669. 2022 Feb 28.

4. Lee CY, Li CL, Dozat T, Perot V, Su G, Hua N, Ainslie J, Wang R, Fujii Y, Pfister
T. Formnet: Structural encoding beyond sequential modeling in form document
information extraction. arXiv preprint jarXiv:2203.08411. 2022 Mar 16.

5. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate
object detection and semantic segmentation. InProceedings of the IEEE conference
on computer vision and pattern recognition 2014 (pp. 580-587)

6. Liu X, Gao F, Zhang Q, Zhao H. Graph convolution for multimodal information
extraction from visually rich documents. arXiv preprint arXiv:1903.11279. 2019.

7. Watanabe T., Luo Q., Sugie N. ” Layout Recognition of Multi-Kinds of Table-Form
Documents. IEEE Trans- actions on Pattern Analysis and Machine Intelligence.

8. Seki M., Fujio M., Nagasaki T., Shinjo H., Marukawa K.: Information Management
System Using Structure Analysis of Paper/Electronic Documents and Its Applica-
tion. In Proceedings of International Conference on Document Analysis and Recog-
nition (ICDAR), 689-693

http://arxiv.org/abs/2202.13669
http://arxiv.org/abs/2203.08411
http://arxiv.org/abs/1903.11279

12 Ritesh Kumar et al.

9. Hu K, Wu Z, Zhong Z, Lin W, Sun L, Huo Q. A Question-Answering Approach
to Key Value Pair Extraction from Form-like Document Images. arXiv preprint
arXiv:2304.07957. 2023 Apr 17.

10. SrikarAppalaraju, BhavanJasani, BhargavaUralaKota, YushengXie,and
R.Manmatha. 2021. DocFormer: End-to-End Transformer for Document Un-
derstanding. In ICCV.

11. RafalPowalski, LukaszBorchmann, DawidJurkiewicz, TomaszDwojak, Michal
Pietruszka, and Gabriela Palka. 2021. Going Full-TILT Boogie on Document Un-
derstanding with Text-Image-Layout Transformer. In ICDAR.

12. Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. Advances
in neural information processing systems. 2017.

13. Park S, Shin S, Lee B, Lee J, Surh J, Seo M, Lee H. CORD: a consolidated receipt
dataset for post-OCR parsing. In Workshop on Document Intelligence at NeurIPS
2019.

14. Guillaume Jaume, Hazim Kemal Ekenel, and Jean- Philippe Thiran. 2019. Funsd:
A dataset for form understanding in noisy scanned documents. 2019 International
Conference on Document Analysis and Recognition Workshops (ICDARW).

15. Huang J, Li C, Subudhi K, Jose D, Balakrishnan S, Chen W, Peng B, Gao J,
Han J. Few-shot named entity recognition: A comprehensive study. arXiv preprint
arXiv:2012.14978. 2020 Dec 29.

16. McCloskey M, Cohen NJ. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation 1989.

17. Zhou DW, Ye HJ, Ma L, Xie D, Pu S, Zhan DC. Few-shot class-incremental learn-
ing by sampling multi-phase tasks. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2022 Aug 22.

18. Monaikul N, Castellucci G, Filice S, Rokhlenko O. Continual learning for named
entity recognition. In AAAT 2021.

19. Chen L, Moschitti A. Transfer learning for sequence labeling using source model
and target data. In AAAT 2019.

20. Tao X, Hong X, Chang X, Dong S, Wei X, Gong Y. Few-shot class-incremental
learning. InProceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition 2020 (pp. 12183-12192).

21. Cheraghian A, Rahman S, Fang P, Roy SK, Petersson L, Harandi M. Semantic-
aware knowledge distillation for few-shot class-incremental learning. InProceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021.

22. Greenberg N, Bansal T, Verga P, McCallum A. Marginal likelihood training of
BiLSTM-CRF for biomedical named entity recognition from disjoint label sets. In
EMNLP 2018 (pp. 2824-2829).

23. Tong M, Wang S, Xu B, Cao Y, Liu M, Hou L, Li J. Learning from miscel-
laneous other-class words for few-shot named entity recognition. arXiv preprint
arXiv:2106.15167. 2021 Jun 29.

24. BPI Challenge 2019, https://icpmconference.org/2019/icpm-2019/contests-
challenges/bpi-challenge-2019/. 2019

25. Rizk Y, Isahagian V, Boag S, Khazaeni Y, Unuvar M, Muthusamy V, Khalaf R,
A conversational digital assistant for intelligent process automation, BPM 2020

26. Rizk, Y., Venkateswaran, P., [sahagian, V., Muthusamy, V., Talamadupula, K. Can
You Teach Robotic Process Automation Bots New Tricks?. In BPM 2022.

27. Weske M. Business Process Management Methodology. Business Process Manage-
ment: Concepts, Languages, Architectures. Springer Berlin Heidelberg. 2012

28. Huo, Siyu, et al. Graph autoencoders for business process anomaly detection. Busi-
ness Process Management: BPM 2021.

http://arxiv.org/abs/2304.07957
http://arxiv.org/abs/2012.14978
http://arxiv.org/abs/2106.15167

	ProtoNER: Few shot Incremental Learning for Named Entity Recognition using Prototypical Networks
	kumar.ritesh@ibm.com, saurabh.goyal1@ibm.com, draverma@amazon.com, vatchei@ibm.com

