Skip to main content

Automatic Alignment of Multi-scale Aerial and Underwater Photogrammetric Point Clouds: A Case Study in the Maldivian Coral Reef

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

The research question that the paper investigates is whether the usage of state of the art algorithms for point clouds registration solves the problem of multi-scale vision-based point clouds registration in mixed aerial and underwater environments. This paper reports very preliminary results on the data we have been able to procure, in the context of a coral reef restoration project nearby Magoodhoo Island (Maldives). The results obtained by exploiting state of the art algorithms are promising, considering that those data presents hard samples, in particular for their multi-scale nature (noise in captured 3D points increases with depth). However, further investigation on larger data-sets is needed to confirm the overall applicability of the current algorithms to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agamennoni, G., Fontana, S., Siegwart, R.Y., Sorrenti, D.G.: Point clouds registration with probabilistic data association. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4092–4098 (2016). https://doi.org/10.1109/IROS.2016.7759602

  2. Agisoft MetaShape, Version 2.0.14. http://www.agisoft.com, software; (Accessed 31 July 2023)

  3. Bayley, D.T.I., Mogg, A.O.M.: A protocol for the large-scale analysis of reefs using structure from motion photogrammetry. Methods Ecol. Evolut. 11(11), 1410–1420 (2020). https://doi.org/10.1111/2041-210X.13476, https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13476

  4. Bellwood, D.R., Hughes, T.P., Folke, C., Nyström, M.: Confronting the coral reef crisis. Nature 429(6994), 827–833 (2004). https://doi.org/10.1038/nature02691,

  5. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. SPIE (1992)

    Google Scholar 

  6. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  7. CloudCompare, Version 2.12.4. http://www.cloudcompare.org, software; (Accessed 31 July 2023)

  8. Curtis, J.S., Galvan, J.W., Primo, A., Osenberg, C.W., Stier, A.C.: 3d photogrammetry improves measurement of growth and biodiversity patterns in branching corals. Coral Reefs 42(3), 623–627 (Mar 2023). https://doi.org/10.1007/s00338-023-02367-7

  9. Fallati, L., Saponari, L., Savini, A., Marchese, F., Corselli, C., Galli, P.: Multi-temporal UAV data and object-based image analysis (OBIA) for estimation of substrate changes in a post-bleaching scenario on a maldivian reef. Remote Sensing 12(13), 2093 (2020). https://doi.org/10.3390/rs12132093,

  10. Ferrari, R., et al.: Photogrammetry as a tool to improve ecosystem restoration. Trends Ecol. Evolu. 36(12), 1093–1101 (2021). https://doi.org/10.1016/j.tree.2021.07.004

  11. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  12. Fontana, S., Cattaneo, D., Ballardini, A.L., Vaghi, M., Sorrenti, D.G.: A benchmark for point clouds registration algorithms. Rob. Auton. Syst. 140, 103734 (2021). https://doi.org/10.1016/j.robot.2021.103734, https://www.sciencedirect.com/science/article/pii/S0921889021000191

  13. Fontana, S., Di Lauro, F., Sorrenti, D.G.: Assessing the practical applicability of neural-based point clouds registration algorithms: A comparative analysis. Authorea, Inc. (Jul 2023). https://doi.org/10.22541/au.168908592.24833908/v1

  14. Gojcic, Z., Zhou, C., Wegner, J.D., Andreas, W.: The perfect match: 3d point cloud matching with smoothed densities. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  15. Hughes, T.P., et al.: Spatial and temporal patterns of mass bleaching of corals in the anthropocene. Science 359(6371), 80–83 (2018). https://doi.org/10.1126/science.aan8048

  16. Hughes, T.P., et al.: Global warming transforms coral reef assemblages. Nature 556(7702), 492–496 (2018). https://doi.org/10.1038/s41586-018-0041-2

  17. Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE J. Rob. Autom. 3(3), 239–248 (1987). https://doi.org/10.1109/JRA.1987.1087097

    Article  Google Scholar 

  18. Montalbetti, E., et al.: Reef complexity influences distribution and habitat choice of the corallivorous seastar culcita schmideliana in the maldives. Coral Reefs 41(2), 253–264 (2022). https://doi.org/10.1007/s00338-022-02230-1

  19. Peterson, E., Carne, L., Balderamos, J., Faux, V., Gleason, A., Schill, S.: The use of unoccupied aerial systems (UASs) for quantifying shallow coral reef restoration success in belize. Drones 7(4), 221 (2023). https://doi.org/10.3390/drones7040221

  20. Ridge, J.T., Johnston, D.W.: Unoccupied aircraft systems (UAS) for marine ecosystem restoration. Front. Marine Sci. 7 (2020). https://doi.org/10.3389/fmars.2020.00438

  21. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009). https://doi.org/10.1109/ROBOT.2009.5152473

  22. Woodhead, A.J., Hicks, C.C., Norström, A.V., Williams, G.J., Graham, N.A.J.: Coral reef ecosystem services in the anthropocene. Functional Ecol. 33(6), 1023–1034 (2019). https://doi.org/10.1111/1365-2435.13331, https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.13331

  23. Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registration. IEEE Trans. Robotics (2020)

    Google Scholar 

  24. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3dmatch: learning local geometric descriptors from rgb-d reconstructions. In: CVPR (2017)

    Google Scholar 

  25. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

  26. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: A modern library for 3D data processing. arXiv:1801.09847 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Di Lauro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Lauro, F., Fallati, L., Fontana, S., Savini, A., Sorrenti, D.G. (2024). Automatic Alignment of Multi-scale Aerial and Underwater Photogrammetric Point Clouds: A Case Study in the Maldivian Coral Reef. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14365. Springer, Cham. https://doi.org/10.1007/978-3-031-51023-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51023-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51022-9

  • Online ISBN: 978-3-031-51023-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics