Abstract
The research question that the paper investigates is whether the usage of state of the art algorithms for point clouds registration solves the problem of multi-scale vision-based point clouds registration in mixed aerial and underwater environments. This paper reports very preliminary results on the data we have been able to procure, in the context of a coral reef restoration project nearby Magoodhoo Island (Maldives). The results obtained by exploiting state of the art algorithms are promising, considering that those data presents hard samples, in particular for their multi-scale nature (noise in captured 3D points increases with depth). However, further investigation on larger data-sets is needed to confirm the overall applicability of the current algorithms to this problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agamennoni, G., Fontana, S., Siegwart, R.Y., Sorrenti, D.G.: Point clouds registration with probabilistic data association. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4092–4098 (2016). https://doi.org/10.1109/IROS.2016.7759602
Agisoft MetaShape, Version 2.0.14. http://www.agisoft.com, software; (Accessed 31 July 2023)
Bayley, D.T.I., Mogg, A.O.M.: A protocol for the large-scale analysis of reefs using structure from motion photogrammetry. Methods Ecol. Evolut. 11(11), 1410–1420 (2020). https://doi.org/10.1111/2041-210X.13476, https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13476
Bellwood, D.R., Hughes, T.P., Folke, C., Nyström, M.: Confronting the coral reef crisis. Nature 429(6994), 827–833 (2004). https://doi.org/10.1038/nature02691,
Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. SPIE (1992)
Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)
CloudCompare, Version 2.12.4. http://www.cloudcompare.org, software; (Accessed 31 July 2023)
Curtis, J.S., Galvan, J.W., Primo, A., Osenberg, C.W., Stier, A.C.: 3d photogrammetry improves measurement of growth and biodiversity patterns in branching corals. Coral Reefs 42(3), 623–627 (Mar 2023). https://doi.org/10.1007/s00338-023-02367-7
Fallati, L., Saponari, L., Savini, A., Marchese, F., Corselli, C., Galli, P.: Multi-temporal UAV data and object-based image analysis (OBIA) for estimation of substrate changes in a post-bleaching scenario on a maldivian reef. Remote Sensing 12(13), 2093 (2020). https://doi.org/10.3390/rs12132093,
Ferrari, R., et al.: Photogrammetry as a tool to improve ecosystem restoration. Trends Ecol. Evolu. 36(12), 1093–1101 (2021). https://doi.org/10.1016/j.tree.2021.07.004
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692
Fontana, S., Cattaneo, D., Ballardini, A.L., Vaghi, M., Sorrenti, D.G.: A benchmark for point clouds registration algorithms. Rob. Auton. Syst. 140, 103734 (2021). https://doi.org/10.1016/j.robot.2021.103734, https://www.sciencedirect.com/science/article/pii/S0921889021000191
Fontana, S., Di Lauro, F., Sorrenti, D.G.: Assessing the practical applicability of neural-based point clouds registration algorithms: A comparative analysis. Authorea, Inc. (Jul 2023). https://doi.org/10.22541/au.168908592.24833908/v1
Gojcic, Z., Zhou, C., Wegner, J.D., Andreas, W.: The perfect match: 3d point cloud matching with smoothed densities. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Hughes, T.P., et al.: Spatial and temporal patterns of mass bleaching of corals in the anthropocene. Science 359(6371), 80–83 (2018). https://doi.org/10.1126/science.aan8048
Hughes, T.P., et al.: Global warming transforms coral reef assemblages. Nature 556(7702), 492–496 (2018). https://doi.org/10.1038/s41586-018-0041-2
Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE J. Rob. Autom. 3(3), 239–248 (1987). https://doi.org/10.1109/JRA.1987.1087097
Montalbetti, E., et al.: Reef complexity influences distribution and habitat choice of the corallivorous seastar culcita schmideliana in the maldives. Coral Reefs 41(2), 253–264 (2022). https://doi.org/10.1007/s00338-022-02230-1
Peterson, E., Carne, L., Balderamos, J., Faux, V., Gleason, A., Schill, S.: The use of unoccupied aerial systems (UASs) for quantifying shallow coral reef restoration success in belize. Drones 7(4), 221 (2023). https://doi.org/10.3390/drones7040221
Ridge, J.T., Johnston, D.W.: Unoccupied aircraft systems (UAS) for marine ecosystem restoration. Front. Marine Sci. 7 (2020). https://doi.org/10.3389/fmars.2020.00438
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009). https://doi.org/10.1109/ROBOT.2009.5152473
Woodhead, A.J., Hicks, C.C., Norström, A.V., Williams, G.J., Graham, N.A.J.: Coral reef ecosystem services in the anthropocene. Functional Ecol. 33(6), 1023–1034 (2019). https://doi.org/10.1111/1365-2435.13331, https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.13331
Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registration. IEEE Trans. Robotics (2020)
Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3dmatch: learning local geometric descriptors from rgb-d reconstructions. In: CVPR (2017)
Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: A modern library for 3D data processing. arXiv:1801.09847 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Di Lauro, F., Fallati, L., Fontana, S., Savini, A., Sorrenti, D.G. (2024). Automatic Alignment of Multi-scale Aerial and Underwater Photogrammetric Point Clouds: A Case Study in the Maldivian Coral Reef. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14365. Springer, Cham. https://doi.org/10.1007/978-3-031-51023-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-51023-6_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51022-9
Online ISBN: 978-3-031-51023-6
eBook Packages: Computer ScienceComputer Science (R0)