Skip to main content

Breast Mass Detection and Classification Using Transfer Learning on OPTIMAM Dataset Through RadImageNet Weights

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

A significant number of women are diagnosed with breast cancer each year. Early detection of breast masses is crucial in improving patient prognosis and survival rates. In recent years, deep learning techniques, particularly object detection models, have shown remarkable success in medical imaging, providing promising tools for the early detection of breast masses. This paper uses transfer learning methodologies to present an end-to-end breast mass detection and classification pipeline. Our approach involves a two-step process: initial detection of breast masses using variants of the YOLO object detection models, followed by classification of the detected masses into benign or malignant categories. We used a subset of OPTIMAM (OMI-DB) dataset for our study. We leveraged the weights of RadImageNet, a set of models specifically trained on medical images, to enhance our object detection models. Among the publicly available RadImageNet weights, DenseNet-121 coupled with the yolov5m model gives 0.718 mean average precision(mAP) at 0.5 IoU threshold and a True Positive Rate (TPR) of 0.97 at 0.85 False Positives Per Image (FPPI). For the classification task, we implement a transfer learning approach with fine-tuning, demonstrating the ability to effectively classify breast masses into benign and malignant categories. We used a combination of class weighting and weight decay methods to tackle the class imbalance problem for the classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattiuzzi, C., Lippi, G.: Current cancer epidemiology. J. Epidemiol. Global Health 9, 217 (2019)

    Article  Google Scholar 

  2. Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A.: Cancer statistics. CA: Cancer J. Clinic. 73, 17–48 (2023). https://doi.org/10.3322/caac.21763

    Article  Google Scholar 

  3. Tabar, L., et al.: The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer 125, 515–523 (2018). https://doi.org/10.1002/cncr.31840

    Article  Google Scholar 

  4. Evans, K.K., Haygood, T.M., Cooper, J., Culpan, A.M., Wolfe, J.M.: A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast. Proc. Natl. Acad. Sci. 113, 10292–10297 (2016)

    Article  Google Scholar 

  5. Sampat, M.P., Markey, M.K., Bovik, A.C., et al.: Computer-aided detection and diagnosis in mammography. Handbook Image Video Process. 2, 1195–1217 (2005)

    Article  Google Scholar 

  6. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  7. Mei, X., et al.: RadimageNet: an open radiologic deep learning research dataset for effective transfer learning. Radiol.: Artif. Intell. 4, e210315 (2022)

    Google Scholar 

  8. Sechopoulos, I., Teuwen, J., Mann, R.: Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art, in: Seminars in Cancer Biology, Elsevier, pp. 214–225 (2021)

    Google Scholar 

  9. Akselrod-Ballin, A., et al.: Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology 292, 331–342 (2019). https://doi.org/10.1148/radiol.2019182622

    Article  Google Scholar 

  10. Yan, Y., Conze, P.H., Lamard, M., Quellec, G., Cochener, B., Coatrieux, G.: Towards improved breast mass detection using dual-view mammogram matching. Med. Image Anal. 71, 102083 (2021). https://doi.org/10.1016/j.media.2021.102083

    Article  Google Scholar 

  11. Agarwal, R., Dıaz, O., Yap, M.H., Llado, X., Martı, R.: Deep learning for mass detection in full field digital mammograms. Comput. Biol. Med. 121, 103774 (2020). https://doi.org/10.1016/j.compbiomed.2020.103774

    Article  Google Scholar 

  12. Betancourt Tarifa, A.S., Marrocco, C., Molinara, M., Tortorella, F., Bria, A.: Transformer-based mass detection in digital mammograms. J. Ambient. Intell. Humaniz. Comput. 14, 2723–2737 (2023)

    Article  Google Scholar 

  13. Ryspayeva, M., Molinara, M.: Breast mass detection and classification using transfer learning. Master’s thesis. University of Cassino and Southern Lazio (2022)

    Google Scholar 

  14. Levy, D., Jain, A.: Breast mass classification from mammograms using deep convolutional neural networks. arXiv preprint arXiv:1612.00542 (2016)

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  16. Du, L., Zhang, R., Wang, X.: Overview of two-stage object detection algorithms. J. Phys.: Conf. Ser., 012033. IOP Publishing (2020)

    Google Scholar 

  17. Cantone, M., Marrocco, C., Tortorella, F., Bria, A.: Convolutional networks and transformers for mammography classification: an experimental study. Sensors 23, 1229 (2023). https://doi.org/10.3390/s23031229

  18. Halling-Brown, M.D., et al.: Optimam mammography image database: a large-scale resource of mammography images and clinical data. Radiol.: Artif. Intell. 3, e200103 (2020)

    Google Scholar 

Download references

Acknowledgements

‘The authors acknowledge the OPTIMAM project and Cancer Research Technology for providing the images used in this study, the staff at Royal Surrey NHS Foundation Trust who developed OMI-DB, and the charity Cancer Research UK which funded the OPTIMAM project. This work was supported by MUR (Italian Ministry for University and Research) funding to AB, CM, and MM through the DIEI Department of Excellence 2018–2022 (law 232/2016) and to FT through the DIEM Department of Excellence 2023–2027 (law 232/2016). Ruth Kehali Kassahun holds an EACEA Erasmus+ grant for the master in Medical Imaging and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Kehali Kassahun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kassahun, R.K., Molinara, M., Bria, A., Marrocco, C., Tortorella, F. (2024). Breast Mass Detection and Classification Using Transfer Learning on OPTIMAM Dataset Through RadImageNet Weights. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14366. Springer, Cham. https://doi.org/10.1007/978-3-031-51026-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51026-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51025-0

  • Online ISBN: 978-3-031-51026-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics