Skip to main content

Prostate Cancer Detection: Performance of Radiomics Analysis in Multiparametric MRI

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

The purpose of the study was to evaluate the performance of radiomics analysis of MR images for the detection of prostate cancer. The radiomics analysis was conducted using axial T2-weighted images from 49 prostate cancers. The study employs a sophisticated hybrid descriptive-inferential method for the meticulous selection and reduction of features, followed by discriminant analysis to construct a robust predictive model. Among 71 radiomics features, original_glrlm_ShortRunLowGrayLevelEmphasis demonstrated exemplary performance in differentiating between the whole prostate gland and prostate cancer. It had an AUROC of 68.46 (95% CI 0.544 ā€“ 0.824; pā€‰=ā€‰0.022), sensitivity of 76.25%, specificity of 73.15%, and accuracy of 71.02%. Radiomic analysis of T2 weighted MR images was demonstrated to have clinical application in prostate cancer detection, paving the way for improved diagnostic procedures and tailor-made treatment plans for prostate cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, L.M., Turkbey, B., Figg, W.D., Choyke, P.L.: Multiparametric MRI in prostate cancer management. Nat. Rev. Clin. Oncol. 11, 346ā€“353 (2014). https://doi.org/10.1038/nrclinonc.2014.69

    Article  Google Scholar 

  2. Thompson, J., Lawrentschuk, N., Frydenberg, M., Thompson, L., Stricker, P.: The role of magnetic resonance imaging in the diagnosis and management of prostate cancer. BJU Int. 112, 6ā€“20 (2013). https://doi.org/10.1111/bju.12381

    Article  Google Scholar 

  3. Cutaia, G., et al.: Radiomics and prostate MRI: current role and future applications. J. Imaging 7, 34 (2021). https://doi.org/10.3390/jimaging7020034

    Article  Google Scholar 

  4. Stefano, A., et al.: Robustness of PET radiomics features: impact of co-registration with MRI. Appl. Sci. 11, 10170 (2021). https://doi.org/10.3390/app112110170

    Article  Google Scholar 

  5. Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014). https://doi.org/10.1038/ncomms5006

    Article  Google Scholar 

  6. Cuocolo, R., et al.: Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. J. Magn. Reson. Imaging 54, 452ā€“459 (2021). https://doi.org/10.1002/jmri.27585

    Article  Google Scholar 

  7. Gallotta, A., et al.: A novel algorithm for the prediction of prostate cancer in clinically suspected patients. Cancer Biomark. 13, 227ā€“234 (2013). https://doi.org/10.3233/CBM-130357

    Article  Google Scholar 

  8. Barone, S., et al.: Hybrid descriptive-inferential method for key feature selection in prostate cancer radiomics. Appl. Stoch. Models Bus. Ind. 37, 961ā€“972 (2021). https://doi.org/10.1002/asmb.2642

    Article  MathSciNet  Google Scholar 

  9. Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30, 1234ā€“1248 (2012). https://doi.org/10.1016/j.mri.2012.06.010

    Article  Google Scholar 

  10. Alongi, P., et al.: Choline PET/CT features to predict survival outcome in high-risk prostate cancer restaging: a preliminary machine-learning radiomics study. Q. J. Nuclear Med. Molecular Imaging 66 (2022). https://doi.org/10.23736/S1824-4785.20.03227-6

  11. Cairone, L., et al.: Robustness of radiomics features to varying segmentation algorithms in magnetic resonance images. Presented at the (2022). https://doi.org/10.1007/978-3-031-13321-3_41

    Article  Google Scholar 

  12. Vernuccio, F., Cannella, R., Comelli, A., Salvaggio, G., Lagalla, R., Midiri, M.: [Radiomics and artificial intelligence: new frontiers in medicine.]. Recenti Prog Med. 111, 130ā€“135 (2020). https://doi.org/10.1701/3315.32853

  13. Giambelluca, D., et al.: PI-RADS 3 lesions: role of prostate MRI texture analysis in the identification of prostate cancer. Curr. Probl. Diagn. Radiol. 50, 175ā€“185 (2021). https://doi.org/10.1067/j.cpradiol.2019.10.009

    Article  Google Scholar 

  14. Comelli, A., et al.: Deep learning-based methods for prostate segmentation in magnetic resonance imaging. Appl. Sci. 11, 782 (2021). https://doi.org/10.3390/app11020782

    Article  Google Scholar 

  15. Salvaggio, G., et al.: Deep learning network for segmentation of the prostate gland with median lobe enlargement in T2-weighted MR images: comparison with manual segmentation method. Curr. Probl. Diagn. Radiol. 51, 328ā€“333 (2022). https://doi.org/10.1067/j.cpradiol.2021.06.006

    Article  Google Scholar 

  16. WoÅŗnicki, P., et al.: Multiparametric MRI for prostate cancer characterization: combined use of radiomics model with PI-RADS and clinical parameters. Cancers (Basel). 12, 1767 (2020). https://doi.org/10.3390/cancers12071767

  17. Bleker, J., Kwee, T.C., Dierckx, R.A.J.O., de Jong, I.J., Huisman, H., Yakar, D.: Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur. Radiol. 30, 1313ā€“1324 (2020). https://doi.org/10.1007/s00330-019-06488-y

    Article  Google Scholar 

  18. Khalvati, F., Zhang, J., Chung, A.G., Shafiee, M.J., Wong, A., Haider, M.A.: MPCaD: a multi-scale radiomics-driven framework for automated prostate cancer localization and detection. BMC Med. Imaging 18, 16 (2018). https://doi.org/10.1186/s12880-018-0258-4

    Article  Google Scholar 

  19. Lee, H., Hwang, S. Il, Lee, H.J., Byun, S.-S., Lee, S.E., Hong, S.K.: Diagnostic performance of diffusion-weighted imaging for prostate cancer: Peripheral zone versus transition zone. PLoS One. 13, e0199636 (2018). https://doi.org/10.1371/journal.pone.0199636

  20. Comelli, A., et al.: Tissue classification to support local active delineation of brain tumors. Presented (2020). https://doi.org/10.1007/978-3-030-39343-4_1

    Article  Google Scholar 

  21. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26, 136ā€“150 (2016). https://doi.org/10.1002/ima.22168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Benfante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, M. et al. (2024). Prostate Cancer Detection: Performance of Radiomics Analysis in Multiparametric MRI. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14366. Springer, Cham. https://doi.org/10.1007/978-3-031-51026-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51026-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51025-0

  • Online ISBN: 978-3-031-51026-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics