Abstract
Ensuring both security and efficiency in Nearest Neighbor Search (NNS) on large datasets remains a formidable challenge, as it often leads to substantial computation and communication costs due to the resource-intensive nature of ciphertext computations. To date, there have been some solutions that are capable of handling privacy-preserving NNS queries on big datasets. However, these approaches either impose significant communication and computational burdens or compromise security. In this paper, we introduce a novel framework, namely SecureANNS, for secure approximate nearest neighbor search in the semi-honest setting. Our approach begins by enhancing the building blocks of secure NNS, specifically the multiplexer and comparison operations, through oblivious transfer. We then adapt the plaintext Locality-Sensitive Hashing algorithm to select a smaller subset, reducing the need for extensive two-party computation. Finally, we introduce a new bucket retrieval algorithm for efficient subset retrieval. Experimental results on various datasets demonstrate that our SecureANNS achieves a speedup of 4\(\times \) and 14\(\times \) compared to two state-of-the-art methods respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Addanki, S., Garbe, K., Jaffe, E., Ostrovsky, R., Polychroniadou, A.: Prio+: privacy preserving aggregate statistics via Boolean shares. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. LNCS, vol. 13409, pp. 516–539. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14791-3_23
Andoni, A., Indyk, P., Razenshteyn, I.: Approximate nearest neighbor search in high dimensions. In: Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, pp. 3287–3318. World Scientific (2018)
Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 535–548 (2013)
Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34
Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp. 478–492. IEEE (2013)
Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on Managing Requirements Knowledge, p. 313. IEEE Computer Society (1979)
Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight techniques for private heavy hitters. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 762–776. IEEE (2021)
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1292–1303 (2016)
Brassard, G., Crepeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_17
Cai, R., Zhang, C., Zhang, L., Ma, W.Y.: Scalable music recommendation by search. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 1065–1074 (2007)
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13, 143–202 (2000)
Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EZPC: programmable and efficient secure two-party computation for machine learning. In: 2019 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 496–511. IEEE (2019)
Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razenshteyn, I., Riazi, M.S.: \(\{\)SANNS\(\}\): scaling up secure approximate \(\{\)k-Nearest\(\}\) neighbors search. In: 29th USENIX Security Symposium (USENIX Security 2020), pp. 2111–2128 (2020)
Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation. In: Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 4-pp. IEEE (2005)
Chor, B., Gilboa, N., Naor, M.: Private Information Retrieval by Keywords. Citeseer (1997)
Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM (JACM) 45(6), 965–981 (1998)
Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging system handling millions of users. In: 2015 IEEE Symposium on Security and Privacy, pp. 321–338. IEEE (2015)
Couteau, G.: New protocols for secure equality test and comparison. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_16
Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_17
Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 253–262 (2004)
Dauterman, E., Feng, E., Luo, E., Popa, R.A., Stoica, I.: Dory: an encrypted search system with distributed trust. In: Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation, pp. 1101–1119 (2020)
Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-protocol secure two-party computation. In: NDSS (2015)
Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner, M.: Pushing the communication barrier in secure computation using lookup tables. Cryptology ePrint Archive (2018)
Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 523–535 (2017)
Edemekong, P.F., Annamaraju, P., Haydel, M.J.: Health insurance portability and accountability act (2018)
Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive (2012)
Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_22
Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)
Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_8
Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35
Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 825–841. IEEE (2020)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613 (1998)
Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9
Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_4
Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40
Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. ISC, pp. 277–346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_6
Liu, L., et al.: Toward highly secure yet efficient KNN classification scheme on outsourced cloud data. IEEE Internet Things J. 6(6), 9841–9852 (2019)
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient indexing for high-dimensional similarity search. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 950–961 (2007)
Mohassel, P., Rosulek, M., Trieu, N.: Practical privacy-preserving k-means clustering. Cryptology ePrint Archive (2019)
Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE (2017)
Qi, Y., Atallah, M.J.: Efficient privacy-preserving k-nearest neighbor search. In: 2008 The 28th International Conference on Distributed Computing Systems, pp. 311–319. IEEE (2008)
Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology ePrint Archive (2005)
Rathee, D., et al.: SIRNN: a math library for secure RNN inference. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1003–1020. IEEE (2021)
Rathee, D., et al.: CrypTFlow2: practical 2-party secure inference. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 325–342 (2020)
Servan-Schreiber, S., Langowski, S., Devadas, S.: Private approximate nearest neighbor search with sublinear communication. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 911–929. IEEE (2022)
Shaul, H., Feldman, D., Rus, D.: Secure \( k \)-ish nearest neighbors classifier. arXiv preprint arXiv:1801.07301 (2018)
Su, M.Y.: Using clustering to improve the KNN-based classifiers for online anomaly network traffic identification. J. Netw. Comput. Appl. 34(2), 722–730 (2011)
Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). A Practical Guide, 1st edn., vol. 10, no. 3152676, p. 10–5555 Springer, Cham (2017)
Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure KNN computation on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 139–152 (2009)
Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for correlated OT with small communication. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 1607–1626 (2020)
Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)
Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8
Zhu, Y., Xu, R., Takagi, T.: Secure k-NN computation on encrypted cloud data without sharing key with query users. In: Proceedings of the 2013 International Workshop on Security in Cloud Computing, pp. 55–60 (2013)
Zuber, M., Sirdey, R.: Efficient homomorphic evaluation of k-NN classifiers. Proc. Priv. Enhancing Technol. 2021(2), 111–129 (2021)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 62122092, No. 62032005).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Song, S., Liu, L., Chen, R., Peng, W., Wang, Y. (2024). Secure Approximate Nearest Neighbor Search with Locality-Sensitive Hashing. In: Tsudik, G., Conti, M., Liang, K., Smaragdakis, G. (eds) Computer Security – ESORICS 2023. ESORICS 2023. Lecture Notes in Computer Science, vol 14346. Springer, Cham. https://doi.org/10.1007/978-3-031-51479-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-51479-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51478-4
Online ISBN: 978-3-031-51479-1
eBook Packages: Computer ScienceComputer Science (R0)