Skip to main content

A Force-Mediated Controller for Cooperative Object Manipulation with Independent Autonomous Robots

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 28))

Included in the following conference series:

  • 109 Accesses

Abstract

We consider cooperative manipulation by multiple robots assisting a leader, when information about the manipulation task, environment, and team of helpers is unavailable, and without the use of explicit communication. The shared object being manipulated serves as a physical channel for coordination, with robots sensing forces associated with its movement. Robots minimize force conflicts, which are unavoidable under these restrictions, by inferring an intended context: decomposing the object’s motion into a task space of allowed motion and a null space in which perturbations are rejected. The leader can signal a change in context by applying a sustained strong force in an intended new direction. We present a controller, prove its stability, and demonstrate its utility through experiments with (a) an in-lab force-sensitive robot assisting a human operator and (b) a multi-robot collective in simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, H., Wen, J.T.: Cooperative load transport: a formation-control perspective. IEEE Trans. Rob. 26(4), 742–750 (2010)

    Article  Google Scholar 

  2. Carey, N.: Decoupled Controller for the Franka Panda (Version 1.08) [Computer software] (2022). https://github.com/niccarey/panda_decoupled_controller

  3. Carey, N.: Unity implementation of the Franka Panda platform(version 1.0) [Computer software] (2020). https://github.com/niccarey/FrankaPanda_Unity

  4. Carey, N.E., Werfel, J.: Collective transport of unconstrained objects via implicit coordination and adaptive compliance. In 2021 IEEE International Conference on Robotics and Automation (ICRA), (pp. 12603–12609). IEEE (2021)

    Google Scholar 

  5. Carey, N.E., Werfel, J.: A force-mediated controller for cooperative object manipulation [Media file, video] (2022) https://youtu.be/VIoj6v_a-Gw

  6. Ćehajić, D., Hirche, S.: Estimating unknown object dynamics in human-robot manipulation tasks. In 2017 IEEE International Conference on Robotics and Automation (ICRA), (pp. 1730–1737) (2017) IEEE

    Google Scholar 

  7. Elwin, M.L., Strong, B., Freeman, R.A., Lynch, K.M.: Human-multirobot collaborative mobile manipulation: the Omnid Mocobots. (2022) arXiv preprint arXiv:2206.14293

  8. Franchi, A., Petitti, A., Rizzo, A.: Decentralized parameter estimation and observation for cooperative mobile manipulation of an unknown load using noisy measurements. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), (pp. 5517–5522). IEEE (2015)

    Google Scholar 

  9. Habibi, G., Kingston, Z., Xie, W., Jellins, M., McLurkin, J.: Distributed centroid estimation and motion controllers for collective transport by multi-robot systems. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), (pp. 1282–1288). IEEE (May 2015)

    Google Scholar 

  10. Hichri, B., Fauroux, J.C., Adouane, L., Doroftei, I., Mezouar, Y.: Design of cooperative mobile robots for co-manipulation and transportation tasks. Robot. Comput.-Integr. Manufact. 57, 412–421 (2019)

    Article  Google Scholar 

  11. Iggidr, A., Sallet, G.: On the stability of nonautonomous systems. Automatica 39(1), 167–171 (2003)

    Article  MathSciNet  Google Scholar 

  12. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  13. Kubus, D., Kroger, T., Wahl, F.M.: On-line rigid object recognition and pose estimation based on inertial parameters. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 1402–1408). IEEE (Oct 2007)

    Google Scholar 

  14. Liang, X., et al.: An adaptive time-varying impedance controller for manipulators. Front. Neurorobot. 16 (2022)

    Google Scholar 

  15. Marino, A., Muscio, G., Pierri, F.: Distributed cooperative object parameter estimation and manipulation without explicit communication. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), (pp. 2110–21116). IEEE (May 2017)

    Google Scholar 

  16. Mavrakis, N., Stolkin, R.: Estimation and exploitation of objects’ inertial parameters in robotic grasping and manipulation: a survey. Robot. Auton. Syst. 124, 103374 (2020)

    Article  Google Scholar 

  17. Montemayor, G., Wen, J.T.: Decentralized collaborative load transport by multiple robots. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, (pp. 372–377). IEEE (Apr 2005)

    Google Scholar 

  18. Ott, C.: Cartesian impedance control of redundant and flexible-joint robots. Springer (2008)

    Google Scholar 

  19. Petitti, A., Franchi, A., Di Paola, D., Rizzo, A.: Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), (pp. 441–446). IEEE (May 2016)

    Google Scholar 

  20. Sadeghian, H., Villani, L., Keshmiri, M., Siciliano, B.: Task-space control of robot manipulators with null-space compliance. IEEE Trans. Rob. 30(2), 493–506 (2013)

    Article  Google Scholar 

  21. Sariyildiz, E., Sekiguchi, H., Nozaki, T., Ugurlu, B., Ohnishi, K.: A stability analysis for the acceleration-based robust position control of robot manipulators via disturbance observer. IEEE/ASME Trans. Mechatron. 23(5), 2369–2378 (2018)

    Article  Google Scholar 

  22. Wang, Z., Schwager, M.: Kinematic multi-robot manipulation with no communication using force feedback. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), (pp. 427–432). IEEE (May 2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Space Technology Research Institutes grant (number 80NSSC19K1076) from NASA’s Space Technology Research Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole E. Carey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carey, N.E., Werfel, J. (2024). A Force-Mediated Controller for Cooperative Object Manipulation with Independent Autonomous Robots. In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer Proceedings in Advanced Robotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-51497-5_11

Download citation

Publish with us

Policies and ethics