Skip to main content

Application of 3D Printed Vacuum-Actuated Module with Multi-soft Material to Support Handwork Rehabilitation

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2022)

Abstract

Soft modular robotics is a research field that pursues body flexibility while maintaining reconfigurability by employing flowable or soft materials as the main constituent materials of modular robots. In soft modular robotics, a hollow structure made of silicone is created, and the inside of the structure is pressurized to generate stretching and bending motions as an actuator module. In general, it is important to design modular robots with reconfigurability, various deformability, and environmental adaptability. Modularization of soft actuators with reconfigurable and diverse deformability allows morphology to be tailored to the desired task. We have developed a soft actuator module, MORI-A, that combines hollow silicone and 3D printable deformable structures (uniaxial shrinking, bending, shearing, uniform contracting, and no deformation). This study proposes a functional extension of the module “MORI-A FleX” for application as a wearable device for physical rehabilitation using this MORI-A module. Our MORI-A FleX connector is a thermoplastic polyurethane flexible connector that can be coated with materials that offer different textures to achieve excellent connectivity and texture variation. We have assembled MORI-A Flex as a rehabilitation device for hand work, assisting the fingers to move harmoniously and enabling them to grasp a slippery, brittle half-boiled egg and a PET bottle containing 200 ml of water in a deactivated state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. ACM SIGEVOlution 7(1), 11–23 (2014)

    Article  Google Scholar 

  2. Kriegman, S., Walker, S., Shah, D., Levin, M., Kramer-Bottiglio, R., Bongard, J.: Automated shapeshifting for function recovery in damaged robots. In: arXiv:1905.09264 (2019)

  3. Vergara, A., Lau, Y., Mendoza-Garcia, R.F., Zagal, J.C.: Soft modular robotic cubes: toward replicating morphogenetic movements of the embryo. PLoS ONE 12(1), e0169179 (2017)

    Article  Google Scholar 

  4. Lee, J., Kim, W., Choi, W., Cho, K.: Soft robotic blocks: introducing SoBL, a fast-build modularized design block. IEEE Robot. Autom. Magaz. 23(3), 30–41 (2016)

    Article  Google Scholar 

  5. Nemitz, M.P., Mihaylov, P., Barraclough, T.W., Ross, D., Stokes, A.A.: Soft robotic blocks: using voice coils to actuate modular soft robots: wormbot, an example. Soft Rob. 3(4), 198–204 (2016)

    Article  Google Scholar 

  6. Zhang, Y., et al.: A mechatronics-embedded pneumatic soft modular robot powered via single air tube. Appl. Sci. 9(11), 2260 (2019)

    Article  Google Scholar 

  7. Zou, J., Lin, Y., Ji, C., Yang, H.: A reconfigurable omnidirectional soft robot based on caterpillar locomotion. Soft Rob. 5(2), 164–174 (2018)

    Article  Google Scholar 

  8. Sui, X., Cai, H., Bie, D., Zhang, Y., Zhao, J., Zhu, Y.: Automatic generation of locomotion patterns for soft modular reconfigurable robots. Appl. Sci. 10(1), 294 (2020)

    Article  Google Scholar 

  9. Morin, S.A., et al.: Using “Click-e-Bricks’’ to make 3D elastomeric structures. Adv. Mater. 26(34), 5991–5999 (2014)

    Article  Google Scholar 

  10. Morin, S.A., et al.: Elastomeric tiles for the fabrication of inflatable structures. Adv. Func. Mater. 24(35), 5541–5549 (2014)

    Article  Google Scholar 

  11. Ogawa, J., Mori, T., Watanabe, Y., Kawakami, M., Shiblee, M.D.N.I., Furukawa, H.: MORI-A: soft vacuum-acctuated module with 3D-printable deformation structure. IEEE Robot. Autom. Lett. 7(2), 2495–2502 (2022)

    Article  Google Scholar 

  12. Hironari, T., Shuichi, W., Koichi, S.: Development of hand rehabilitation system to prevent contracture for finger joints based on the therapy of occupational therapists (Massege hand and range of motion exercises using pneumatic soft actuators) . Trans. JSME 80(820), 348-348 (2014). (in Japanese)

    Google Scholar 

  13. Robertson, M.A., Kara, O.C., Paik, J.: Soft pneumatic actuator-driven origami-inspired modular robotic “pneumagami’’. Int. J. Robot. Res. 40(1), 72–85 (2021)

    Article  Google Scholar 

  14. Yiyue, L., et al.: Digital fabrication of pneumatic actuators with integrated sending by machine knitting. In: CHI Conference on Human Factors in Computing Systems, pp. 1-13 (2022)

    Google Scholar 

  15. Al-Fahaam, H., Davis, S., Nefti-Meziani, S., Theodoridis, T.: Novel soft bending actuator-based power augmentation hand exoskeleton controlled by human intention. Intell. Serv. Robot. 11(3), 247–268 (2018)

    Article  Google Scholar 

  16. Xie, D., Ma, Z., Liu, J., Zuo, S.: Pneumatic artificial muscle based on novel winding method. Actuators 10(5), 100 (2021)

    Article  Google Scholar 

  17. Herr, H.M., Koronbluh, R.D.: New horizons for orthotic and prosthetic technology: artificial muscle for ambulation. In: Smart Structures and Materials 2004. Electroactive Polymer Actuators and Devices (EAPAD), vol. 5385, pp. 1-9 (2004)

    Google Scholar 

  18. Dong, T., Zhang, X., Liu, T.: Artificial muscles for wearable assistance and rehabilitation. Front. Inf. Technol. Electron. Eng. 19(11), 1303–1315 (2018)

    Article  Google Scholar 

  19. Al-Fahaam, H., Davis, S., Nefti-Meziani, S.: The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons. Robot. Auton. Syst. 99, 63–74 (2018)

    Article  Google Scholar 

  20. Pan, M., et al.: Soft actuators and robotic devices for rehabilitation and assistance. Adv. Intell. Syst. 4(4), 2100140 (2022)

    Article  Google Scholar 

  21. Mendoza, M.J., et al.: A vacuum-powered artificial muscle designed for infant rehabilitation. Micromachines 12(8), 971 (2021)

    Article  Google Scholar 

  22. Touma, T.: Complex of Parallel crosses structure. J. Imaging Soc. Japan 58, 406–414 (2019)

    Google Scholar 

  23. Yokoo, T., Hidema, R., Furukawa, H.: Smart lenses developed with high-strength and shape memory gels. e-J. Surf. Sci. Nanotechnol. 10, 243–247 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by JSPS KAKENHI Grant Number JP18H05471, JP19H01122, JP21H04936, JP21K14040, JP22K17972, JST -OPERA Program Grant Number JPMJOP1844, Moonshot Agriculture, Forestry and Fisheries Research and Development Program (MS508, Grant Number JPJ009237) and the Cabinet Office (CAO), Cross-ministerial Strategic Innovation Promotion Program (SIP), “An intelligent knowledge processing infrastructure, integrating physical and virtual domains”,”Intensive Support for Young Promising Researchers” (funding agency: NEDO)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abe, S., Ogawa, J., Watanabe, Y., Shiblee, M.N.I., Kawakami, M., Furukawa, H. (2024). Application of 3D Printed Vacuum-Actuated Module with Multi-soft Material to Support Handwork Rehabilitation. In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer Proceedings in Advanced Robotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-51497-5_30

Download citation

Publish with us

Policies and ethics