Skip to main content

Smarticle 2.0: Design of Scalable, Entangled Smart Matter

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 28))

Included in the following conference series:

  • 126 Accesses

Abstract

We present a new iteration of smart active matter modules capable of unprecedented 3D entanglement, designed specifically for fabrication and operation at large scales by a range of scientific users. We discuss the benefits of entanglement compared to traditional rigid, lattice formations in active matter and modular robots, and the design which supports low cost, a small and appropriate form factor, low weight, low barrier-of-entry, and ease of operation. We characterize the platform in terms of actuation repeatability and longevity, lifting and holding strength, a number of sensing modalities, and battery life. We demonstrate short and (relatively) long range communication using tactile and acoustic transceivers. We further show exploratory collective behaviors with up to 10 modules, including static entanglement and self disassembly. We hope that this open-source ‘robo-physical’ platform can pave the way for new innovations across the fields of modular robots and active and soft matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer 38(6), 99–101 (2005)

    Article  Google Scholar 

  2. Savoie, W., Pazouki, A., Negrut, D., Goldman, D.: Smarticles: design and construction of smart particles to aid discovery of principles of smart, active granular matter. In: The First International Symposium on Swarm Behavior and Bio-Inspired Robotics (2015)

    Google Scholar 

  3. Chvykov, P., et al.: Low rattling: a predictive principle for self-organization in active collectives. Science 371(6524), 90–95 (2021)

    Article  MathSciNet  Google Scholar 

  4. Gardi, G., Ceron, S., Wang, W., Petersen, K., Sitti, M.: Microrobot collectives with reconfigurable morphologies, behaviors, and functions. Nat. Commun. 13(1), 1–14 (2022)

    Article  Google Scholar 

  5. Daudelin, J., Jing, G., Tosun, T., Yim, M., Kress-Gazit, H., Campbell, M.: An integrated system for perception-driven autonomy with modular robots. Sci. Robot. 3(23), eaat4983 (2018)

    Article  Google Scholar 

  6. Gilpin, K., Rus, D.: Modular robot systems. IEEE Robot. Autom. Mag. 17(3), 38–55 (2010)

    Article  Google Scholar 

  7. Haghighat, B., Droz, E., Martinoli, A.: Lily: a miniature floating robotic platform for programmable stochastic self-assembly. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1941–1948. IEEE (2015)

    Google Scholar 

  8. Ceron, S., Kimmel, M.A., Nilles, A., Petersen, K.: Soft robotic oscillators with strain-based coordination. IEEE Robot. Autom. Lett. 6(4), 7557–7563 (2021)

    Article  Google Scholar 

  9. Wilson, N.J., Ceron, S., Horowitz, L., Petersen, K.: Scalable and robust fabrication, operation, and control of compliant modular robots. Front. Robot. AI 7, 44 (2020)

    Article  Google Scholar 

  10. Li, S., et al.: Particle robotics based on statistical mechanics of loosely coupled components. Nature 567(7748), 361–365 (2019)

    Article  Google Scholar 

  11. Warkentin, R., Savoie, W., Goldman, D.I.: Locomoting robots composed of immobile robots. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), pp. 224–227. IEEE (2018)

    Google Scholar 

  12. Savoie, W., et al.: A robot made of robots: emergent transport and control of a smarticle ensemble. Sci. Robot. 4(34), eaax4316 (2019)

    Article  Google Scholar 

  13. Nilles, A., Ceron, S., Napp, N., Petersen, K.: Strain-based consensus in soft, inflatable robots. In: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), pp. 789–794. IEEE (2022)

    Google Scholar 

  14. Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: one centimeter modules for programmable matter through self-disassembly. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2485–2492. IEEE (2010)

    Google Scholar 

  15. Swissler, P., Rubenstein, M.: Fireant3D: a 3D self-climbing robot towards non-latticed robotic self-assembly. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3340–3347. IEEE (2020)

    Google Scholar 

  16. Savoie, W., et al.: Phototactic supersmarticles. Artif. Life Robot. 23(4), 459–468 (2018)

    Article  Google Scholar 

  17. Zhou, W., Gravish, N.: Density dependent synchronization in contact-coupled oscillators. arXiv preprint arXiv:2012.07124 (2020)

  18. Ozkan-Aydin, Y., Goldman, D.I., Bhamla, M.S.: Collective dynamics in entangled worm and robot blobs. Proc. Natl. Acad. Sci. 118(6), e2010542118 (2021)

    Article  Google Scholar 

  19. Gravish, N., Franklin, S.V., Hu, D.L., Goldman, D.I.: Entangled granular media. Phys. Rev. Lett. 108(20), 208001 (2012)

    Article  Google Scholar 

  20. Woern, H., Szymanski, M., Seyfried, J.: The i-swarm project. In: ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 492–496. IEEE (2006)

    Google Scholar 

  21. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3293–3298. IEEE (2012)

    Google Scholar 

  22. Hartenberg, R., Danavit, J.: Kinematic Synthesis of Linkages. McGraw-Hill, New York (1964)

    Google Scholar 

  23. Budynas, R., Nisbett, K.: EBOOK Shigley’s Mechanical Engineering Design 11e in SI Units. McGraw-Hill Education (Asia) (2020)

    Google Scholar 

  24. Hu, D., Phonekeo, S., Altshuler, E., Brochard-Wyart, F.: Entangled active matter: from cells to ants. Eur. Phys. J. Spec. Top. 225(4), 629–649 (2016)

    Article  Google Scholar 

  25. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by NSF awards #1933284 and #2042411, and the Packard Fellowship for Science and Engineering. The authors would like to acknowledge many fruitful discussions with Prof. Goldman at the Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirstin Petersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, D., Chen, J., Cutler, S., Petersen, K. (2024). Smarticle 2.0: Design of Scalable, Entangled Smart Matter. In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer Proceedings in Advanced Robotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-51497-5_36

Download citation

Publish with us

Policies and ethics