Abstract
In the Internet of Everything era, indoor environment provides multiple benefits across different domains to their occupants such as improving their well-being and health, ensuring their safety, providing valuable assistance to their tasks and enhancing their experience using various types of intelligent sensors and devices. So far, we witnessed smart environments thriving in education, as they improve the overall experience, efficiency and education. One prominent example of is the smart university campus, empowered by IoE systems. Initially, such data is not considered sensitive, private and confidential to the occupants. However, through statistical analysis and machine learning, and in combination with heuristics and public information acquired, it can pose a significant risk to their privacy as it can directly leak personal information regarding their preferences, needs and interests. Unfortunately, the ICT systems of universities were targeted by numerous cyber attacks in the past. Therefore, it is only a matter of time before smart university campuses form the attack surface to novel privacy-leakage attacks. Hence, there is clear need for detailed and in-depth investigation. In this paper, we conduct a study on how the smart university campuses could leak sensitive information. We discuss how such information could threaten the occupants and their privacy, both in cyber and physical space, and the challenges related to their protection. Finally, we provide possible recommendations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of things. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) From Active Data Management to Event-Based Systems and More. LNCS, vol. 6462, pp. 242–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17226-7_15
Procopiou, A., Chen, T.M.: Security challenges and solutions in IoT networks for the smart cities. In: Internet of Things, 1st edn., pp. 161–204. CRC Press, Boca Raton (2022)
Chen, D., Bovornkeeratiroj, P., Irwin, D., Shenoy, P.: Private memoirs of IoT devices: safeguarding user privacy in the IoT era. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1327–1336 (2018). https://doi.org/10.1109/ICDCS.2018.00133
Weinberg, B.D., Milne, G.R., Andonova, Y.G., Hajjat, F.M.: Internet of things: convenience vs. privacy and secrecy. Bus. Horizons 58(6), 615–624 (2015). https://doi.org/10.1016/j.bushor.2015.06.005
Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a service model for smart cities supported by internet of things. Trans. Emerg. Telecommun. Technol. 25(1), 81–93 (2014)
Mace, J.C., Morisset, C., Pierce, K., Gamble, C., Maple, C., Fitzgerald, J.: A multi-modelling based approach to assessing the security of smart buildings. In: Living in the Internet of Things: Cybersecurity of the IoT - 2018, pp. 1–10 (2018). https://doi.org/10.1049/cp.2018.0031
Righetti, F., Vallati, C., Anastasi, G.: IoT Applications in Smart Cities: A Perspective Into Social and Ethical Issues. In: 2018 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 387–392 (2018). https://doi.org/10.1109/SMARTCOMP.2018.00034
Alami, A., Benhlima, L., Bah, S.: An overview of privacy preserving techniques in smart home wireless sensor networks. In: 2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA), pp. 1–4 (2015). https://doi.org/10.1109/SITA.2015.7358409
Pappachan, P., et al.: Towards privacy-aware smart buildings: capturing, communicating, and enforcing privacy policies and preferences. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 193–198 (2017). https://doi.org/10.1109/ICDCSW.2017.52
Kalikova, J., Krcal, J., Sterba, M.: Use of iBeacon technology for safe movement of disabled people. In: 2021 Smart City Symposium Prague (SCSP) (2021). https://doi.org/10.1109/SCSP52043.2021.9447392
Orza, O., Constantin, F., Negoita, A., Bosoc, S.C., Balaceanu, C., Suciu, G.: Indoor air quality monitoring for improvement of the environment in smart toilets. In: 2021 16th International Conference on Engineering of Modern Electric Systems (EMES), pp. 1–4 (2021). https://doi.org/10.1109/EMES52337.2021.9484146
Marques, G., Pitarma, R.: An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health 13(11), 1152 (2016)
Lymperopoulos, P., Meade, K.: PathPass: opening doors for people with disabilities. In: 2014 4th International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), pp. 32–35 (2014). https://doi.org/10.1109/MOBIHEALTH.2014.7015902
McColl, S.L., Veitch, J.A.: Full-spectrum fluorescent lighting: a review of its effects on physiology and health. Psychol. Med. 31(6), 949–964 (2001)
Rejeh, N., Heravi-Karimooi, M., Tadrisi, S.D., Jahani, A., Vaismoradi, M., Jordan, S.: The impact of listening to pleasant natural sounds on anxiety and physiologic parameters in patients undergoing coronary angiography: A pragmatic quasi-randomized-controlled trial. Complement. Therap. Clin. Pract. 25, 42–51 (2016). https://doi.org/10.1016/j.ctcp.2016.08.001. ISSN 1744-3881
Ashkenazy, T., Einat, H., Kronfeld-Schor, N.: Effects of bright light treatment on depression- and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behav. Brain Res. 201(2), 343–346 (2009). https://doi.org/10.1016/j.bbr.2009.03.005. ISSN 0166-4328
Keshavarz, M., Anwar, M.: Towards improving privacy control for smart homes: a privacy decision framework. In: 2018 16th Annual Conference on Privacy, Security and Trust (PST), pp. 1–3 (2018). https://doi.org/10.1109/PST.2018.8514198
Salha, R.A., Jawabrah, M.Q., Badawy, U.I., Jarada, A., Alastal, A.I.: Towards smart, sustainable, accessible and inclusive city for persons with disability by taking into account checklists tools. J. Geogr. Inf. Syst. 12(04), 348–371 (2020)
Chao, C.: Transport phenomena of human exhaled droplets due to respiratory action in ventilated indoor environments. Hong Kong Med. J. 14(5 Suppl), 19–22 (2008)
Raysoni, A.U., Stock, T.H., Sarnat, J.A., et al.: Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: implications for exposure assessment and siting schools in urban areas. Atmos. Environ. 80, 140–151 (2013)
Saini, J., Dutta, M., Marques, G.: A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 30(1), 1–12 (2020)
Rawi, N.A.M.N., Jalaludin, J., Chua, P.C.: Indoor air quality and respiratory health among Malay preschool children in Selangor. Biomed. Res. Int. 2015, 248178 (2015)
Gupta, D., Bhatt, S., Gupta, M., Tosun, A.S.: Future smart connected communities to fight COVID-19 outbreak. Internet Things 13(100342), 100342 (2021)
Ramapatruni, S., Narayanan, S.N., Mittal, S., Joshi, A., Joshi, K.: Anomaly detection models for smart home security. In: 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 19–24 (2019). https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00015
Mace, J.C., Morisset, C., Smith, L.: A socio-technical ethical process for managing access to smart building data. In: Living in the Internet of Things (IoT 2019) (2019). https://doi.org/10.1049/cp.2019.0135
Zhang, W., Wu, Y., Calautit, J.K.: A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment. Renew. Sustain. Energy Rev. 167(112704), 112704 (2022)
Bakó-Biró, Z., Wargocki, P., Weschler, C.J., Fanger, P.O.: Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air 14(3), 178–187 (2004)
Bugeja, J., Jacobsson, A., Davidsson, P.: On privacy and security challenges in smart connected homes. In: 2016 European Intelligence and Security Informatics Conference (EISIC), pp. 172–175 (2016). https://doi.org/10.1109/EISIC.2016.044
Jin, M., Bekiaris-Liberis, N., Weekly, K., Spanos, C., Bayen, A.: Sensing by proxy: occupancy detection based on indoor CO2 concentration. Berkeley.edu (2015)
Jin, M., Bekiaris-Liberis, N., Weekly, K., Spanos, C.J., Bayen, A.M.: Occupancy detection via environmental sensing. IEEE Trans. Autom. Sci. Eng. 15(2), 443–455 (2018). https://doi.org/10.1109/TASE.2016.2619720
Jin, R., He, X., Dai, H.: On the security-privacy tradeoff in collaborative security: a quantitative information flow game perspective. IEEE Trans. Inf. Forensics Secur. 14(12), 3273–3286 (2019). https://doi.org/10.1109/TIFS.2019.2914358
Khashan, O.A.: Hybrid lightweight proxy re-encryption scheme for secure fog-to-things environment. IEEE Access 8, 66878–66887 (2020). https://doi.org/10.1109/ACCESS.2020.298431
Roy, S., Rawat, U., Karjee, J.: A lightweight cellular automata based encryption technique for IoT applications. IEEE Access 7, 39782–39793 (2019). https://doi.org/10.1109/ACCESS.2019.2906326
Fotovvat, A., Rahman, G.M.E., Vedaei, S.S., Wahid, K.A.: Comparative performance analysis of lightweight cryptography algorithms for IoT sensor nodes. IEEE Internet Things J. 8(10), 8279–8290 (2021). https://doi.org/10.1109/JIOT.2020.3044526
Camtepe, S., et al.: Compcrypt-lightweight ANS-based compression and encryption. IEEE Trans. Inf. Forensics Secur. 16, 3859–3873 (2021). https://doi.org/10.1109/TIFS.2021.3096026
Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)
Molina-Markham, A., Danezis, G., Fu, K., Shenoy, P., Irwin, D.: Designing privacy-preserving smart meters with low-cost microcontrollers. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 239–253. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_18
Chen, D., Irwin, D., Shenoy, P., Albrecht, J.: Combined heat and privacy: preventing occupancy detection from smart meters. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 208–215 (2014). https://doi.org/10.1109/PerCom.2014.6813962
Bordel, B., Alcarria, R., Robles, T., Iglesias, M.S.: Data authentication and anonymization in IoT scenarios and future 5G networks using chaotic digital watermarking. IEEE Access 9, 22378–22398 (2021). https://doi.org/10.1109/ACCESS.2021.3055771
Attaullah, H., et al.: Fuzzy-logic-based privacy-aware dynamic release of IoT-enabled healthcare data. IEEE Internet Things J. 9(6), 4411–4420 (2022). https://doi.org/10.1109/JIOT.2021.3103939
Ghali, C., Tsudik, G., Wood, C.A.: When encryption is not enough: privacy attacks in content-centric networking. In: Proceedings of the 4th ACM Conference on Information-Centric Networking (2017)
Ständer, M., Hadjakos, A., Lochschmidt, N., Klos, C., Renner, B., Mühlhäuser, M.: A Smart Kitchen Infrastructure. In: 2012 IEEE International Symposium on Multimedia, pp. 96–99 (2012). https://doi.org/10.1109/ISM.2012.27
Edward, M., Karyono, K., Meidia, H.: Smart fridge design using NodeMCU and home server based on Raspberry Pi 3. In: 2017 4th International Conference on New Media Studies (CONMEDIA), pp. 148–151 (2017). https://doi.org/10.1109/CONMEDIA.2017.8266047
Ukil, A., Bandyopadhyay, S., Pal, A.: IoT-privacy: to be private or not to be private. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 123–124 (2014). https://doi.org/10.1109/INFCOMW.2014.6849186
Serghides, D.K., Chatzinikola, C.K., Katafygiotou, M.C.: Comparative studies of the occupants’ behaviour in a university building during winter and summer time. Int. J. Sustain. Energy 34(8), 528–551 (2015)
Chang, C.Y., Chen, P.-K.: Human response to window views and indoor plants in the workplace. HortScience 40(5), 1354–1359 (2005)
Katafygiotou, M.C., Serghides, D.K.: Bioclimatic chart analysis in three climate zones in Cyprus. Indoor Built Environ. 24(6), 746–760 (2015)
Nicol, J.F., Humphreys, M.A.: Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 34(6), 563–572 (2002)
Smolander, J.: Effect of cold exposure on older humans. Int. J. Sports Med. 23(2), 86–92 (2002)
Stavrou, E.: Guidelines to develop consumers cyber resilience capabilities in The IoE ecosystem. In: Pereira, T., Impagliazzo, J., Santos, H. (eds.) IoECon 2022. LNICST, vol. 458, pp. 18–28. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25222-8_2
NICE. Quality statement 6: Emergency oxygen during an exacerbation, Chronic obstructive pulmonary disease in adults Quality standards (2011)
Tachycardia. Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/22108-tachycardia. Accessed 03 Sept 2022
High blood pressure and older adults. National Institute on Aging. https://www.nia.nih.gov/health/high-blood-pressure-and-older-adults. Accessed 03 Sept 2022
Terman, M., Terman, J.S.: Light therapy. Health Prog. 4(3), 5 (1998)
Binaural beats are being used as sound wave therapy for anxiety, but does it really help? Prevention (2021). https://www.prevention.com/health/mental-health/a35782370/binaural-beats-for-anxiety/. Accessed 03 Sept 2022
Asthma workup. Medscape.com (2022). https://emedicine.medscape.com/article/296301-workup. Accessed 03 Sept 2022
Abdul-Qawy, A.S., Pramod, P., Magesh, E., Srinivasulu, T.: The internet of things (IoT): an overview. Int. J. Eng. Res. Appl. 1(5), 71–82 (2015)
Pekar, A., Mocnej, J., Seah, W.K.G., Zolotova, I.: Application domain-based overview of IoT network traffic characteristics. ACM Comput. Surv. 53(4), 1–33 (2021). https://doi.org/10.1145/3399669. Article 87
Carbon dioxide in indoor air. Ncceh.ca. https://ncceh.ca/documents/field-inquiry/carbon-dioxide-indoor-air. Accessed 03 Sept 2022
Kiesler, N., Impagliazzo, J.: Perspectives on the internet of everything. In: Pereira, T., Impagliazzo, J., Santos, H. (eds.) IoECon 2022. LNICST, vol. 458, pp. 3–17. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25222-8_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Procopiou, A., Stavrou, E. (2024). Privacy Concerns in Smart Indoor Environments in the Internet of Everything Era: A Smart University Campus Case Study. In: Pereira, T., Impagliazzo, J., Santos, H., Chen, J. (eds) Internet of Everything. IOECON 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 551. Springer, Cham. https://doi.org/10.1007/978-3-031-51572-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-51572-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51571-2
Online ISBN: 978-3-031-51572-9
eBook Packages: Computer ScienceComputer Science (R0)