Skip to main content

Privacy Concerns in Smart Indoor Environments in the Internet of Everything Era: A Smart University Campus Case Study

  • Conference paper
  • First Online:
Internet of Everything (IOECON 2023)

Abstract

In the Internet of Everything era, indoor environment provides multiple benefits across different domains to their occupants such as improving their well-being and health, ensuring their safety, providing valuable assistance to their tasks and enhancing their experience using various types of intelligent sensors and devices. So far, we witnessed smart environments thriving in education, as they improve the overall experience, efficiency and education. One prominent example of is the smart university campus, empowered by IoE systems. Initially, such data is not considered sensitive, private and confidential to the occupants. However, through statistical analysis and machine learning, and in combination with heuristics and public information acquired, it can pose a significant risk to their privacy as it can directly leak personal information regarding their preferences, needs and interests. Unfortunately, the ICT systems of universities were targeted by numerous cyber attacks in the past. Therefore, it is only a matter of time before smart university campuses form the attack surface to novel privacy-leakage attacks. Hence, there is clear need for detailed and in-depth investigation. In this paper, we conduct a study on how the smart university campuses could leak sensitive information. We discuss how such information could threaten the occupants and their privacy, both in cyber and physical space, and the challenges related to their protection. Finally, we provide possible recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of things. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) From Active Data Management to Event-Based Systems and More. LNCS, vol. 6462, pp. 242–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17226-7_15

    Chapter  Google Scholar 

  2. Procopiou, A., Chen, T.M.: Security challenges and solutions in IoT networks for the smart cities. In: Internet of Things, 1st edn., pp. 161–204. CRC Press, Boca Raton (2022)

    Google Scholar 

  3. Chen, D., Bovornkeeratiroj, P., Irwin, D., Shenoy, P.: Private memoirs of IoT devices: safeguarding user privacy in the IoT era. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1327–1336 (2018). https://doi.org/10.1109/ICDCS.2018.00133

  4. Weinberg, B.D., Milne, G.R., Andonova, Y.G., Hajjat, F.M.: Internet of things: convenience vs. privacy and secrecy. Bus. Horizons 58(6), 615–624 (2015). https://doi.org/10.1016/j.bushor.2015.06.005

    Article  Google Scholar 

  5. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a service model for smart cities supported by internet of things. Trans. Emerg. Telecommun. Technol. 25(1), 81–93 (2014)

    Article  Google Scholar 

  6. Mace, J.C., Morisset, C., Pierce, K., Gamble, C., Maple, C., Fitzgerald, J.: A multi-modelling based approach to assessing the security of smart buildings. In: Living in the Internet of Things: Cybersecurity of the IoT - 2018, pp. 1–10 (2018). https://doi.org/10.1049/cp.2018.0031

  7. Righetti, F., Vallati, C., Anastasi, G.: IoT Applications in Smart Cities: A Perspective Into Social and Ethical Issues. In: 2018 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 387–392 (2018). https://doi.org/10.1109/SMARTCOMP.2018.00034

  8. Alami, A., Benhlima, L., Bah, S.: An overview of privacy preserving techniques in smart home wireless sensor networks. In: 2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA), pp. 1–4 (2015). https://doi.org/10.1109/SITA.2015.7358409

  9. Pappachan, P., et al.: Towards privacy-aware smart buildings: capturing, communicating, and enforcing privacy policies and preferences. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 193–198 (2017). https://doi.org/10.1109/ICDCSW.2017.52

  10. Kalikova, J., Krcal, J., Sterba, M.: Use of iBeacon technology for safe movement of disabled people. In: 2021 Smart City Symposium Prague (SCSP) (2021). https://doi.org/10.1109/SCSP52043.2021.9447392

  11. Orza, O., Constantin, F., Negoita, A., Bosoc, S.C., Balaceanu, C., Suciu, G.: Indoor air quality monitoring for improvement of the environment in smart toilets. In: 2021 16th International Conference on Engineering of Modern Electric Systems (EMES), pp. 1–4 (2021). https://doi.org/10.1109/EMES52337.2021.9484146

  12. Marques, G., Pitarma, R.: An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health 13(11), 1152 (2016)

    Article  Google Scholar 

  13. Lymperopoulos, P., Meade, K.: PathPass: opening doors for people with disabilities. In: 2014 4th International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), pp. 32–35 (2014). https://doi.org/10.1109/MOBIHEALTH.2014.7015902

  14. McColl, S.L., Veitch, J.A.: Full-spectrum fluorescent lighting: a review of its effects on physiology and health. Psychol. Med. 31(6), 949–964 (2001)

    Article  Google Scholar 

  15. Rejeh, N., Heravi-Karimooi, M., Tadrisi, S.D., Jahani, A., Vaismoradi, M., Jordan, S.: The impact of listening to pleasant natural sounds on anxiety and physiologic parameters in patients undergoing coronary angiography: A pragmatic quasi-randomized-controlled trial. Complement. Therap. Clin. Pract. 25, 42–51 (2016). https://doi.org/10.1016/j.ctcp.2016.08.001. ISSN 1744-3881

    Article  Google Scholar 

  16. Ashkenazy, T., Einat, H., Kronfeld-Schor, N.: Effects of bright light treatment on depression- and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behav. Brain Res. 201(2), 343–346 (2009). https://doi.org/10.1016/j.bbr.2009.03.005. ISSN 0166-4328

    Article  Google Scholar 

  17. Keshavarz, M., Anwar, M.: Towards improving privacy control for smart homes: a privacy decision framework. In: 2018 16th Annual Conference on Privacy, Security and Trust (PST), pp. 1–3 (2018). https://doi.org/10.1109/PST.2018.8514198

  18. Salha, R.A., Jawabrah, M.Q., Badawy, U.I., Jarada, A., Alastal, A.I.: Towards smart, sustainable, accessible and inclusive city for persons with disability by taking into account checklists tools. J. Geogr. Inf. Syst. 12(04), 348–371 (2020)

    Google Scholar 

  19. Chao, C.: Transport phenomena of human exhaled droplets due to respiratory action in ventilated indoor environments. Hong Kong Med. J. 14(5 Suppl), 19–22 (2008)

    MathSciNet  Google Scholar 

  20. Raysoni, A.U., Stock, T.H., Sarnat, J.A., et al.: Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: implications for exposure assessment and siting schools in urban areas. Atmos. Environ. 80, 140–151 (2013)

    Article  Google Scholar 

  21. Saini, J., Dutta, M., Marques, G.: A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 30(1), 1–12 (2020)

    Article  Google Scholar 

  22. Rawi, N.A.M.N., Jalaludin, J., Chua, P.C.: Indoor air quality and respiratory health among Malay preschool children in Selangor. Biomed. Res. Int. 2015, 248178 (2015)

    Google Scholar 

  23. Gupta, D., Bhatt, S., Gupta, M., Tosun, A.S.: Future smart connected communities to fight COVID-19 outbreak. Internet Things 13(100342), 100342 (2021)

    Article  Google Scholar 

  24. Ramapatruni, S., Narayanan, S.N., Mittal, S., Joshi, A., Joshi, K.: Anomaly detection models for smart home security. In: 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 19–24 (2019). https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00015

  25. Mace, J.C., Morisset, C., Smith, L.: A socio-technical ethical process for managing access to smart building data. In: Living in the Internet of Things (IoT 2019) (2019). https://doi.org/10.1049/cp.2019.0135

  26. Zhang, W., Wu, Y., Calautit, J.K.: A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment. Renew. Sustain. Energy Rev. 167(112704), 112704 (2022)

    Article  Google Scholar 

  27. Bakó-Biró, Z., Wargocki, P., Weschler, C.J., Fanger, P.O.: Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air 14(3), 178–187 (2004)

    Article  Google Scholar 

  28. Bugeja, J., Jacobsson, A., Davidsson, P.: On privacy and security challenges in smart connected homes. In: 2016 European Intelligence and Security Informatics Conference (EISIC), pp. 172–175 (2016). https://doi.org/10.1109/EISIC.2016.044

  29. Jin, M., Bekiaris-Liberis, N., Weekly, K., Spanos, C., Bayen, A.: Sensing by proxy: occupancy detection based on indoor CO2 concentration. Berkeley.edu (2015)

    Google Scholar 

  30. Jin, M., Bekiaris-Liberis, N., Weekly, K., Spanos, C.J., Bayen, A.M.: Occupancy detection via environmental sensing. IEEE Trans. Autom. Sci. Eng. 15(2), 443–455 (2018). https://doi.org/10.1109/TASE.2016.2619720

    Article  Google Scholar 

  31. Jin, R., He, X., Dai, H.: On the security-privacy tradeoff in collaborative security: a quantitative information flow game perspective. IEEE Trans. Inf. Forensics Secur. 14(12), 3273–3286 (2019). https://doi.org/10.1109/TIFS.2019.2914358

    Article  Google Scholar 

  32. Khashan, O.A.: Hybrid lightweight proxy re-encryption scheme for secure fog-to-things environment. IEEE Access 8, 66878–66887 (2020). https://doi.org/10.1109/ACCESS.2020.298431

    Article  Google Scholar 

  33. Roy, S., Rawat, U., Karjee, J.: A lightweight cellular automata based encryption technique for IoT applications. IEEE Access 7, 39782–39793 (2019). https://doi.org/10.1109/ACCESS.2019.2906326

    Article  Google Scholar 

  34. Fotovvat, A., Rahman, G.M.E., Vedaei, S.S., Wahid, K.A.: Comparative performance analysis of lightweight cryptography algorithms for IoT sensor nodes. IEEE Internet Things J. 8(10), 8279–8290 (2021). https://doi.org/10.1109/JIOT.2020.3044526

    Article  Google Scholar 

  35. Camtepe, S., et al.: Compcrypt-lightweight ANS-based compression and encryption. IEEE Trans. Inf. Forensics Secur. 16, 3859–3873 (2021). https://doi.org/10.1109/TIFS.2021.3096026

    Article  Google Scholar 

  36. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  37. Molina-Markham, A., Danezis, G., Fu, K., Shenoy, P., Irwin, D.: Designing privacy-preserving smart meters with low-cost microcontrollers. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 239–253. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_18

    Chapter  Google Scholar 

  38. Chen, D., Irwin, D., Shenoy, P., Albrecht, J.: Combined heat and privacy: preventing occupancy detection from smart meters. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 208–215 (2014). https://doi.org/10.1109/PerCom.2014.6813962

  39. Bordel, B., Alcarria, R., Robles, T., Iglesias, M.S.: Data authentication and anonymization in IoT scenarios and future 5G networks using chaotic digital watermarking. IEEE Access 9, 22378–22398 (2021). https://doi.org/10.1109/ACCESS.2021.3055771

    Article  Google Scholar 

  40. Attaullah, H., et al.: Fuzzy-logic-based privacy-aware dynamic release of IoT-enabled healthcare data. IEEE Internet Things J. 9(6), 4411–4420 (2022). https://doi.org/10.1109/JIOT.2021.3103939

    Article  MathSciNet  Google Scholar 

  41. Ghali, C., Tsudik, G., Wood, C.A.: When encryption is not enough: privacy attacks in content-centric networking. In: Proceedings of the 4th ACM Conference on Information-Centric Networking (2017)

    Google Scholar 

  42. Ständer, M., Hadjakos, A., Lochschmidt, N., Klos, C., Renner, B., Mühlhäuser, M.: A Smart Kitchen Infrastructure. In: 2012 IEEE International Symposium on Multimedia, pp. 96–99 (2012). https://doi.org/10.1109/ISM.2012.27

  43. Edward, M., Karyono, K., Meidia, H.: Smart fridge design using NodeMCU and home server based on Raspberry Pi 3. In: 2017 4th International Conference on New Media Studies (CONMEDIA), pp. 148–151 (2017). https://doi.org/10.1109/CONMEDIA.2017.8266047

  44. Ukil, A., Bandyopadhyay, S., Pal, A.: IoT-privacy: to be private or not to be private. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 123–124 (2014). https://doi.org/10.1109/INFCOMW.2014.6849186

  45. Serghides, D.K., Chatzinikola, C.K., Katafygiotou, M.C.: Comparative studies of the occupants’ behaviour in a university building during winter and summer time. Int. J. Sustain. Energy 34(8), 528–551 (2015)

    Article  Google Scholar 

  46. Chang, C.Y., Chen, P.-K.: Human response to window views and indoor plants in the workplace. HortScience 40(5), 1354–1359 (2005)

    Article  Google Scholar 

  47. Katafygiotou, M.C., Serghides, D.K.: Bioclimatic chart analysis in three climate zones in Cyprus. Indoor Built Environ. 24(6), 746–760 (2015)

    Article  Google Scholar 

  48. Nicol, J.F., Humphreys, M.A.: Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 34(6), 563–572 (2002)

    Article  Google Scholar 

  49. Smolander, J.: Effect of cold exposure on older humans. Int. J. Sports Med. 23(2), 86–92 (2002)

    Article  Google Scholar 

  50. Stavrou, E.: Guidelines to develop consumers cyber resilience capabilities in The IoE ecosystem. In: Pereira, T., Impagliazzo, J., Santos, H. (eds.) IoECon 2022. LNICST, vol. 458, pp. 18–28. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25222-8_2

    Chapter  Google Scholar 

  51. NICE. Quality statement 6: Emergency oxygen during an exacerbation, Chronic obstructive pulmonary disease in adults Quality standards (2011)

    Google Scholar 

  52. Tachycardia. Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/22108-tachycardia. Accessed 03 Sept 2022

  53. High blood pressure and older adults. National Institute on Aging. https://www.nia.nih.gov/health/high-blood-pressure-and-older-adults. Accessed 03 Sept 2022

  54. Terman, M., Terman, J.S.: Light therapy. Health Prog. 4(3), 5 (1998)

    Google Scholar 

  55. Binaural beats are being used as sound wave therapy for anxiety, but does it really help? Prevention (2021). https://www.prevention.com/health/mental-health/a35782370/binaural-beats-for-anxiety/. Accessed 03 Sept 2022

  56. Asthma workup. Medscape.com (2022). https://emedicine.medscape.com/article/296301-workup. Accessed 03 Sept 2022

  57. Abdul-Qawy, A.S., Pramod, P., Magesh, E., Srinivasulu, T.: The internet of things (IoT): an overview. Int. J. Eng. Res. Appl. 1(5), 71–82 (2015)

    Google Scholar 

  58. Pekar, A., Mocnej, J., Seah, W.K.G., Zolotova, I.: Application domain-based overview of IoT network traffic characteristics. ACM Comput. Surv. 53(4), 1–33 (2021). https://doi.org/10.1145/3399669. Article 87

    Article  Google Scholar 

  59. Carbon dioxide in indoor air. Ncceh.ca. https://ncceh.ca/documents/field-inquiry/carbon-dioxide-indoor-air. Accessed 03 Sept 2022

  60. Kiesler, N., Impagliazzo, J.: Perspectives on the internet of everything. In: Pereira, T., Impagliazzo, J., Santos, H. (eds.) IoECon 2022. LNICST, vol. 458, pp. 3–17. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25222-8_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andria Procopiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Procopiou, A., Stavrou, E. (2024). Privacy Concerns in Smart Indoor Environments in the Internet of Everything Era: A Smart University Campus Case Study. In: Pereira, T., Impagliazzo, J., Santos, H., Chen, J. (eds) Internet of Everything. IOECON 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 551. Springer, Cham. https://doi.org/10.1007/978-3-031-51572-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51572-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51571-2

  • Online ISBN: 978-3-031-51572-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics