Abstract
Digital signatures are widely used in various applications, including email security, document authentication, and electronic transactions. They play an essential role in ensuring the non-repudiation and integrity of digital transactions and communication. Motivated by the progress of developments in quantum computers, researchers are dynamically proposing digital signature schemes that can withstand quantum attacks. Recently, Soni et al. presented a digital signature protocol that relies on the difficulty of the shortest integer solution challenge in lattices. This protocol has significantly smaller key and signature sizes than previously proposed lattice-based protocols. The design is also compact, simple and elegant. Hence, it is crucial to analyse the security of this protocol. Thus, we perform cryptanalysis on the Soni et al. scheme, which indicates that the availability of one valid message-signature pair can enable an attacker to extract the signer’s secret key. It is a significant flaw as the singing key is not a one-time key and the one-time use of this key will lead to its leakage. To overcome this flaw, we suggest a countermeasure in which the signing key can’t be achieved using any number of valid message-signature pairs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, D., Chung, E.: A note on the concrete hardness of the shortest independent vector in lattices. Inf. Process. Lett. 167, 106065 (2021)
Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient lattice-based signature scheme with provably secure instantiation. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1_3
Alagic, G., et al.: Status report on the second round of the NIST post-quantum cryptography standardization process. US Dept. Commer., NIST 2 (2020)
Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., Schwabe, P.: TESLA: tightly-secure efficient signatures from standard lattices. IACR Cryptol. ePrint Arch. 2015, 755 (2015)
Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)
Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_29
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25, 601–639 (2012)
Davies, D.W.: Applying the RSA digital signature to electronic mail. Computer 16(02), 55–62 (1983)
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)
Goldwasser, S., Micciancio, D.: Complexity of Lattice Problems: A Cryptographic Perspective, vol. 671. Springer, Cham (2002)
Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31
Gupta, D.S., Biswas, G.: Design of lattice-based ELGamal encryption and signature schemes using sis problem. Trans. Emerg. Telecommun. Technol. 29(6), e3255 (2018)
Haraty, R.A., El-Kassar, A.N., Shebaro, B.M.: A comparative study of ELGamal based digital signature algorithms. J. Comput. Methods Sci. Eng. 6(s1), S147–S156 (2006)
Harn, L.: Batch verifying multiple RSA digital signatures. Electron. Lett. 34(12), 1219–1220 (1998)
Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Johnson, D.B., Menezes, A.J.: Elliptic curve DSA (ECDSA): an enhanced DSA. In: Proceedings of the 7th Conference on USENIX Security Symposium, vol. 7, pp. 13–23 (1998)
Khot, S.: Hardness of approximating the shortest vector problem in lattices. J. ACM (JACM) 52(5), 789–808 (2005)
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43
Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptol. ePrint Arch. (2009)
Qiao, G., Lam, K.-Y.: RSA signature algorithm for microcontroller implementation. In: Quisquater, J.-J., Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 353–356. Springer, Heidelberg (2000). https://doi.org/10.1007/10721064_32
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Shepherdson, J.: Inverses and zero divisors in matrix rings. Proc. Lond. Math. Soc. 3(1), 71–85 (1951)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)
Soni, L., Chandra, H., Gupta, D.S., Keval, R.: Quantum-resistant public-key encryption and signature schemes with smaller key sizes. Cluster Comput.,1–13 (2022)
Wang, S., Zhu, Y., Ma, D., Feng, R.: Lattice-based key exchange on small integer solution problem. Sci. China Inf. Sci. 57, 1–12 (2014)
Xu, Y., Tian, M., Huang, L., Yang, W., Shen, X.: Improvement of a lattice-based signature scheme. J. Inf. Hiding Multim. Signal Process. 5(1), 41–46 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pursharthi, K., Mishra, D. (2024). Cryptanalysis with Countermeasure on the SIS Based Signature Scheme. In: Regazzoni, F., Mazumdar, B., Parameswaran, S. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2023. Lecture Notes in Computer Science, vol 14412. Springer, Cham. https://doi.org/10.1007/978-3-031-51583-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-51583-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51582-8
Online ISBN: 978-3-031-51583-5
eBook Packages: Computer ScienceComputer Science (R0)