Skip to main content

ADC-Bank: Detecting Acoustic Out-of-Band Signal Injection onĀ Inertial Sensors

  • Conference paper
  • First Online:
Security and Privacy in Cyber-Physical Systems and Smart Vehicles (SmartSP 2023)

Abstract

Inertial sensors are widely used in navigation, motion tracking, and gesture recognition systems. However, these sensors are vulnerable to spoofing attacks, where an attacker injects a carefully designed acoustic signal to trick the sensor readings. Traditional approaches to detecting and mitigating attacks rely on module redundancy, i.e., adding multiple sensor modules to increase robustness. However, this approach is not always feasible due to the limited space and increased complexity of current printed circuit boards.

This paper proposes a new method, ADC-Bank, to detect inertial sensor spoofing attacks via acoustic out-of-band signals. Unlike other multiple-sensor-based solutions, it is based on component redundancy within one sensor, using multiple analog-to-digital converters (ADCs) with different sampling rates to simultaneously sample the output of the sensors. The different sample rates result in different aliasing frequencies for out-of-band signals that can be used to detect attacks. The proposed method is evaluated on off-the-shelf inertial sensors with commercial ADCs, demonstrating its ability to detect the attacking signals with relatively low cost and computation overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arduino: Arduino Uno Rev3. https://store-usa.arduino.cc/products/arduino-uno-rev3. Accessed 16 Aug 2022

  2. Avisoft. Ultrasoundgate. http://www.avisoft.com/ultrasoundgate/. Accessed 16 Aug 2022

  3. Bolton, C., Rampazzi, S., Li, C., Kwong, A., Xu, W., Fu, K.: Blue note: how intentional acoustic interference damages availability and integrity in hard disk drives and operating systems. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 1048ā€“1062. IEEE (2018)

    Google ScholarĀ 

  4. Castro, S., Dean, R., Roth, G., Flowers, G.T., Grantham, B.: Influence of acoustic noise on the dynamic performance of mems gyroscopes. In: ASME International Mechanical Engineering Congress and Exposition, vol. 43033, pp. 1825ā€“1831 (2007)

    Google ScholarĀ 

  5. Dean, R.N., et al.: On the degradation of mems gyroscope performance in the presence of high power acoustic noise. In: 2007 IEEE International Symposium on Industrial Electronics, pp. 1435ā€“1440. IEEE (2007)

    Google ScholarĀ 

  6. Dean, R.N., et al.: A characterization of the performance of a mems gyroscope in acoustically harsh environments. IEEE Trans. Ind. Electron. 58(7), 2591ā€“2596 (2010)

    ArticleĀ  Google ScholarĀ 

  7. Analog Devices. Adxl335. https://www.analog.com/cn/products/adxl335.html. Accessed 16 Aug 2022

  8. Sami Fadali, M., Visioli, A.: Digital Control Engineering: Analysis and Design, Chapter 12 Practical Issues. Academic Press, Cambridge (2012)

    Google ScholarĀ 

  9. Gallego-JuĆ”rez, J.A., Rodriguez-Corral, G., Gaete-Garreton, L.: An ultrasonic transducer for high power applications in gases. Ultrasonics 16(6), 267ā€“271 (1978)

    ArticleĀ  Google ScholarĀ 

  10. Gao, M., et al.: KITE: exploring the practical threat from acoustic transduction attacks on inertial sensors. In: 20th ACM Conference on Embedded Networked Sensor Systems (2022)

    Google ScholarĀ 

  11. Giechaskiel, I., Rasmussen, K.: Taxonomy and challenges of out-of-band signal injection attacks and defenses. IEEE Commun. Surv. Tutor. 22(1), 645ā€“670 (2019)

    ArticleĀ  Google ScholarĀ 

  12. Giechaskiel, I., Zhang, Y., Rasmussen, K.B.: A framework for evaluating security in the presence of signal injection attacks. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019, Part I. LNCS, vol. 11735, pp. 512ā€“532. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_25

    ChapterĀ  Google ScholarĀ 

  13. Hurley, R.: Design considerations for ESD/EMI filters: II low pass filters for audio filter applications. ON Semiconductor (2007)

    Google ScholarĀ 

  14. National Instruments. NI USB-4431. https://www.ni.com/pdf/manuals/376767a.pdf. Accessed 16 Aug 2022

  15. Kitchin, C.: Avoiding Op Amp instability problems in single-supply applications. Analog Devices, Tech. Rep (2001)

    Google ScholarĀ 

  16. Kune, D.F., et al.: Ghost talk: mitigating EMI signal injection attacks against analog sensors. In: 2013 IEEE Symposium on Security and Privacy, pp. 145ā€“159. IEEE (2013)

    Google ScholarĀ 

  17. Laermer, F.: Mechanical Microsensors. MEMS: A Practical Guide to Design, Analysis, and Applications, pp. 523ā€“566 (2006)

    Google ScholarĀ 

  18. Mishali, M., Eldar, Y.C.: From theory to practice: sub-nyquist sampling of sparse wideband analog signals. IEEE J. Sel. Top. Signal Process. 4(2), 375ā€“391 (2010)

    ArticleĀ  Google ScholarĀ 

  19. Nashimoto, S., Suzuki, D., Sugawara, T., Sakiyama, K.: Sensor confusion: defeating Kalman filter in signal injection attack. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 511ā€“524 (2018)

    Google ScholarĀ 

  20. Park, Y., Son, Y., Shin, H., Kim, D., Kim, Y.: This ainā€™t your dose: sensor spoofing attack on medical infusion pump. In: 10th USENIX Workshop on Offensive Technologies. USENIX (2016)

    Google ScholarĀ 

  21. Pei, D., Salomaa, A., Ding, C.: Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography. World Scientific (1996)

    Google ScholarĀ 

  22. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles sensors: experiments on camera and lidar. Black Hat Europe 11(2015), 995 (2015)

    Google ScholarĀ 

  23. Rigol. DG5352 function/arbitrary waveform generator. https://rigol.com/products/DGdetail/DG5000. Accessed 16 Aug 2022

  24. SainSmart. UDB1002S DDS signal generator. https://www.amazon.com/SainSmart-UDB1002S-Signal-Generator-Function/dp/B00JTR66CG/. Accessed 10 July 2022

  25. Sawigun, C., Thanapitak, S.: A 0.9-nW, 101-Hz, and 46.3-uv IRN low-pass filter for ECG acquisition using FVF biquads. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(11), 2290ā€“2298 (2018)

    Google ScholarĀ 

  26. Shaeffer, D.K.: Mems inertial sensors: a tutorial overview. IEEE Commun. Mag. 51(4), 100ā€“109 (2013)

    ArticleĀ  Google ScholarĀ 

  27. Shaw, M.L.: Accelerometer overload considerations for automotive airbag applications. SAE Trans., 344ā€“350 (2002)

    Google ScholarĀ 

  28. Shin, H., Kim, D., Kwon, Y., Kim, Y.: Illusion and dazzle: adversarial optical channel exploits against lidars for automotive applications. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 445ā€“467. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_22

    ChapterĀ  Google ScholarĀ 

  29. Sƶderkvist, J.: Micromachined gyroscopes. Sens. Actuators, A 43(1ā€“3), 65ā€“71 (1994)

    ArticleĀ  Google ScholarĀ 

  30. Son, Y., et al.: Rocking drones with intentional sound noise on gyroscopic sensors. In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 881ā€“896 (2015)

    Google ScholarĀ 

  31. SparkFun. MiniGen pro mini signal generator shield. https://www.sparkfun.com/products/11420. Accessed 10 July 2022

  32. Sreenivasulu, P., Hanumantha Rao, G., Rekha, S., Bhat, M.S.: A 0.3 V, 56 db DR, 100 Hz fourth order low-pass filter for ECG acquisition system. Microelectron. J. 94, 104652 (2019)

    Google ScholarĀ 

  33. Stilson, T.: Problems with the anti-aliasing filter. https://ccrma.stanford.edu/CCRMA/Courses/252/sensors/node35.html. Accessed 11 Dec 2022

  34. STMICROELECTRONICS. Lpy550al. https://pdf1.alldatasheetcn.com/datasheet-pdf/view/346169/STMICROELECTRONICS/LPY550AL.html. Accessed 16 Aug 2022

  35. Tharayil, K.S., et al.: Sensor defense in-software (SDI): practical software based detection of spoofing attacks on position sensors. Eng. Appl. Artif. Intell. 95, 103904 (2020)

    Google ScholarĀ 

  36. Tian, J., et al.: Mobile device fingerprint identification using gyroscope resonance. IEEE Access 9, 160855ā€“160867 (2021)

    ArticleĀ  Google ScholarĀ 

  37. Trippel, T., Weisse, O., Xu, W., Honeyman, P., Fu, K.: Walnut: Waging doubt on the integrity of mems accelerometers with acoustic injection attacks. In: 2017 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 3ā€“18. IEEE (2017)

    Google ScholarĀ 

  38. Tu, Y., Lin, Z., Lee, I., Hei, X.: Injected and delivered: fabricating implicit control over actuation systems by spoofing inertial sensors. In: USENIX Security Symposium, pp. 1545ā€“1562 (2018)

    Google ScholarĀ 

  39. Tu, Y., Rampazzi, S., Hao, B., Rodriguez, A., Fu, K., Hei, X.: Trick or heat? Manipulating critical temperature-based control systems using rectification attacks. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2301ā€“2315 (2019)

    Google ScholarĀ 

  40. Tu, Y., Rampazzi, S., Hei, X.: Towards adversarial control loops in sensor attacks: a case study to control the kinematics and actuation of embedded systems. arXiv preprint arXiv:2203.07670 (2022)

  41. Wang, Z., Wang, K., Yang, B., Li, S., Pan, A.: Sonic gun to smart devices. Black Hat USA (2017)

    Google ScholarĀ 

  42. Wenyuan, X., Yan, C., Jia, W., Ji, X., Liu, J.: Analyzing and enhancing the security of ultrasonic sensors for autonomous vehicles. IEEE Internet Things J. 5(6), 5015ā€“5029 (2018)

    ArticleĀ  Google ScholarĀ 

  43. Yan, C., Wenyuan, X., Liu, J.: Can you trust autonomous vehicles: contactless attacks against sensors of self-driving vehicle. Def Con 24(8), 109 (2016)

    Google ScholarĀ 

  44. Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640ā€“1659 (1998)

    ArticleĀ  Google ScholarĀ 

  45. Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., Xu, W.: DolphinAttack: inaudible voice commands. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 103ā€“117 (2017)

    Google ScholarĀ 

Download references

Acknowledgment

The authors thank the anonymous reviewers for their valuable comments that improved this paper. This work is supported in part by the US NSF under grants CNS-1812553, CNS-2117785, OIA-2229752, CNS-2231682, and two gifts from Meta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J. et al. (2024). ADC-Bank: Detecting Acoustic Out-of-Band Signal Injection onĀ Inertial Sensors. In: Chen, Y., Lin, CW., Chen, B., Zhu, Q. (eds) Security and Privacy in Cyber-Physical Systems and Smart Vehicles. SmartSP 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 552. Springer, Cham. https://doi.org/10.1007/978-3-031-51630-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51630-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51629-0

  • Online ISBN: 978-3-031-51630-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics