Skip to main content

Efficient Topic Detection Using an Adaptive Neural Network Architecture

  • Conference paper
  • First Online:
Advances in Information Systems, Artificial Intelligence and Knowledge Management (ICIKS 2023)

Abstract

Topic detection is the process of identifying the underlying themes or topics present in a set of documents. It has become more critical due to the increase of information electronically available and the necessity to process and filter it. In this respect, we introduce a new approach to detecting topics called ClusART. Thus, we created a three-phase approach: a first phase during which lexical preprocessing was conducted. The second phase pays heed to the construction and the generation of vectors representing the documents carried out. In the topic detection phase, the FuzzyART algorithm is used for the training phase, and a classifier based on ParagraphVector is used for the test phase. The comparative study of our approach on the 20 Newsgroups dataset showed that our method could detect almost relevant topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 20 Newsgroups. http://qwone.com/~jason/20Newsgroups/

  2. Abainia, K., Ouamour, S., Sayoud, H.: Topic identification of Arabic noisy texts based on KNN. In: 2015 International Conference on Information and Communication Technology Research, ICTRC 2015, pp. 92–95. IEEE (2015)

    Google Scholar 

  3. Bigi, B., Brun, A., Haton, J.P., Smaili, K., Zitouni, I.: A comparative study of topic identification on newspaper and e-mail. In: Proceedings - Eighth International Symposium on String Processing and Information Retrieval, SPIRE 2001, pp. 238–241. IEEE (2001)

    Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Google Scholar 

  5. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw. 4(6), 759–771 (1991)

    Article  Google Scholar 

  6. Denecke, K., Brosowski, M.: Topic detection in noisy data sources. In: 2010 Fifth International Conference on Digital Information Management (ICDIM), pp. 50–55. IEEE (2010)

    Google Scholar 

  7. Di Corso, E., Proto, S., Vacchetti, B., Bethaz, P., Cerquitelli, T.: Simplifying text mining activities: scalable and self-tuning methodology for topic detection and characterization. Appl. Sci. 12(10), 5125 (2022)

    Article  Google Scholar 

  8. Dieng, A.B., Ruiz, F.J., Blei, D.M.: Topic modeling in embedding spaces. Trans. Assoc. Comput. Linguist. 8, 439–453 (2020)

    Article  Google Scholar 

  9. Garcia, K., Berton, L.: Topic detection and sentiment analysis in twitter content related to COVID-19 from brazil and the USA. Appl. Soft Comput. 101, 107057 (2021)

    Article  Google Scholar 

  10. Jamil, N.S., Ku-Mahamud, K.R., Din, A.M.: Topic identification method for textual document. J. Multidisc. Eng. Sci. Technol. (JMEST) 4(2), 6643–6647 (2017)

    Google Scholar 

  11. Liu, W., Jiang, L., Wu, Y., Tang, T., Li, W.: Topic detection and tracking based on event ontology. IEEE Access 8, 98044–98056 (2020)

    Article  Google Scholar 

  12. Mamo, N., Azzopardi, J., Layfield, C.: Fine-grained topic detection and tracking on twitter. In: KDIR, pp. 79–86 (2021)

    Google Scholar 

  13. Patel, S., Suthar, S., Patel, S., Patel, N., Patel, A.: Topic detection and tracking in news articles. In: Satapathy, S.C., Joshi, A. (eds.) ICTIS 2017. SIST, vol. 84, pp. 420–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63645-0_48

    Chapter  Google Scholar 

  14. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  15. Proto, S., Di Corso, E., Ventura, F., Cerquitelli, T.: Useful topic: self-tuning strategies to enhance latent dirichlet allocation. In: 2018 IEEE International Congress on Big Data (BigData Congress), pp. 33–40. IEEE (2018)

    Google Scholar 

  16. Sayyadi, H., Raschid, L.: A graph analytical approach for topic detection. ACM Trans. Internet Technol. (TOIT) 13(2), 4 (2013)

    Article  Google Scholar 

  17. Schonhofen, P.: Identifying document topics using the Wikipedia category network. Web Intell. Agent Syst. Int. J. 7(2), 195–207 (2009)

    Google Scholar 

  18. Serrano-Gotarredona, T., Linares-Barranco, B., Andreou, A.G.: Adaptive Resonance Theory Microchips: Circuit Design Techniques, vol. 456. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-8710-5

    Book  Google Scholar 

  19. Soucy, P., Mineau, G.W.: A simple KNN algorithm for text categorization. In: Proceedings 2001 IEEE International Conference on Data Mining. ICDMm, vol. 63, pp. 647–648. IEEE (2001)

    Google Scholar 

  20. Wankhade, M., Annavarapu, C.S.R., Verma, M.K.: CBVoSD: context-based vectors over sentiment domain ensemble model for review classification. J. Supercomput. 78(5), 6411–6447 (2022)

    Article  Google Scholar 

  21. Wayne Charles, L.: Topic detection & tracking (TDT)-overview & perspective. In: Workshop held at the University of Maryland on, vol. 27, p. 28. Citeseer (1997)

    Google Scholar 

  22. Xiao, M., et al.: Hierarchical interdisciplinary topic detection model for research proposal classification. IEEE Trans. Knowl. Data Eng. (2023)

    Google Scholar 

  23. Yang, J., Lu, W., Hu, J., Huang, S.: A novel emerging topic detection method: a knowledge ecology perspective. Inf. Process. Manag. 59(2), 102843 (2022)

    Article  Google Scholar 

  24. Yang, S., Tang, Y.: News topic detection based on capsule semantic graph. Big Data Mining Analytics 5(2), 98–109 (2022)

    Article  Google Scholar 

  25. Zhang, C., Wang, H., Cao, L., Wang, W., Xu, F.: A hybrid term-term relations analysis approach for topic detection. Knowl.-Based Syst. 93, 109–120 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Manai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manai, M., Ben Yahia, S. (2024). Efficient Topic Detection Using an Adaptive Neural Network Architecture. In: Saad, I., Rosenthal-Sabroux, C., Gargouri, F., Chakhar, S., Williams, N., Haig, E. (eds) Advances in Information Systems, Artificial Intelligence and Knowledge Management. ICIKS 2023. Lecture Notes in Business Information Processing, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-51664-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51664-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51663-4

  • Online ISBN: 978-3-031-51664-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics