Abstract
Topic detection is the process of identifying the underlying themes or topics present in a set of documents. It has become more critical due to the increase of information electronically available and the necessity to process and filter it. In this respect, we introduce a new approach to detecting topics called ClusART. Thus, we created a three-phase approach: a first phase during which lexical preprocessing was conducted. The second phase pays heed to the construction and the generation of vectors representing the documents carried out. In the topic detection phase, the FuzzyART algorithm is used for the training phase, and a classifier based on ParagraphVector is used for the test phase. The comparative study of our approach on the 20 Newsgroups dataset showed that our method could detect almost relevant topics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
20 Newsgroups. http://qwone.com/~jason/20Newsgroups/
Abainia, K., Ouamour, S., Sayoud, H.: Topic identification of Arabic noisy texts based on KNN. In: 2015 International Conference on Information and Communication Technology Research, ICTRC 2015, pp. 92ā95. IEEE (2015)
Bigi, B., Brun, A., Haton, J.P., Smaili, K., Zitouni, I.: A comparative study of topic identification on newspaper and e-mail. In: Proceedings - Eighth International Symposium on String Processing and Information Retrieval, SPIRE 2001, pp. 238ā241. IEEE (2001)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993ā1022 (2003)
Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw. 4(6), 759ā771 (1991)
Denecke, K., Brosowski, M.: Topic detection in noisy data sources. In: 2010 Fifth International Conference on Digital Information Management (ICDIM), pp. 50ā55. IEEE (2010)
Di Corso, E., Proto, S., Vacchetti, B., Bethaz, P., Cerquitelli, T.: Simplifying text mining activities: scalable and self-tuning methodology for topic detection and characterization. Appl. Sci. 12(10), 5125 (2022)
Dieng, A.B., Ruiz, F.J., Blei, D.M.: Topic modeling in embedding spaces. Trans. Assoc. Comput. Linguist. 8, 439ā453 (2020)
Garcia, K., Berton, L.: Topic detection and sentiment analysis in twitter content related to COVID-19 from brazil and the USA. Appl. Soft Comput. 101, 107057 (2021)
Jamil, N.S., Ku-Mahamud, K.R., Din, A.M.: Topic identification method for textual document. J. Multidisc. Eng. Sci. Technol. (JMEST) 4(2), 6643ā6647 (2017)
Liu, W., Jiang, L., Wu, Y., Tang, T., Li, W.: Topic detection and tracking based on event ontology. IEEE Access 8, 98044ā98056 (2020)
Mamo, N., Azzopardi, J., Layfield, C.: Fine-grained topic detection and tracking on twitter. In: KDIR, pp. 79ā86 (2021)
Patel, S., Suthar, S., Patel, S., Patel, N., Patel, A.: Topic detection and tracking in news articles. In: Satapathy, S.C., Joshi, A. (eds.) ICTIS 2017. SIST, vol. 84, pp. 420ā426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63645-0_48
Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130ā137 (1980)
Proto, S., Di Corso, E., Ventura, F., Cerquitelli, T.: Useful topic: self-tuning strategies to enhance latent dirichlet allocation. In: 2018 IEEE International Congress on Big Data (BigData Congress), pp. 33ā40. IEEE (2018)
Sayyadi, H., Raschid, L.: A graph analytical approach for topic detection. ACM Trans. Internet Technol. (TOIT) 13(2), 4 (2013)
Schonhofen, P.: Identifying document topics using the Wikipedia category network. Web Intell. Agent Syst. Int. J. 7(2), 195ā207 (2009)
Serrano-Gotarredona, T., Linares-Barranco, B., Andreou, A.G.: Adaptive Resonance Theory Microchips: Circuit Design Techniques, vol. 456. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-8710-5
Soucy, P., Mineau, G.W.: A simple KNN algorithm for text categorization. In: Proceedings 2001 IEEE International Conference on Data Mining. ICDMm, vol. 63, pp. 647ā648. IEEE (2001)
Wankhade, M., Annavarapu, C.S.R., Verma, M.K.: CBVoSD: context-based vectors over sentiment domain ensemble model for review classification. J. Supercomput. 78(5), 6411ā6447 (2022)
Wayne Charles, L.: Topic detection & tracking (TDT)-overview & perspective. In: Workshop held at the University of Maryland on, vol. 27, p. 28. Citeseer (1997)
Xiao, M., et al.: Hierarchical interdisciplinary topic detection model for research proposal classification. IEEE Trans. Knowl. Data Eng. (2023)
Yang, J., Lu, W., Hu, J., Huang, S.: A novel emerging topic detection method: a knowledge ecology perspective. Inf. Process. Manag. 59(2), 102843 (2022)
Yang, S., Tang, Y.: News topic detection based on capsule semantic graph. Big Data Mining Analytics 5(2), 98ā109 (2022)
Zhang, C., Wang, H., Cao, L., Wang, W., Xu, F.: A hybrid term-term relations analysis approach for topic detection. Knowl.-Based Syst. 93, 109ā120 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Manai, M., Ben Yahia, S. (2024). Efficient Topic Detection Using an Adaptive Neural Network Architecture. In: Saad, I., Rosenthal-Sabroux, C., Gargouri, F., Chakhar, S., Williams, N., Haig, E. (eds) Advances in Information Systems, Artificial Intelligence and Knowledge Management. ICIKS 2023. Lecture Notes in Business Information Processing, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-51664-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-51664-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51663-4
Online ISBN: 978-3-031-51664-1
eBook Packages: Computer ScienceComputer Science (R0)