Skip to main content

DigitalPlantMan: A Multi Process Manufacturing Task Management System for Digital Plant

  • Conference paper
  • First Online:
Internet of Things – ICIOT 2023 (ICIOT 2023)

Abstract

In recent years, with the rapid development of the new generation of information technology and the acceleration of economic globalization, all industries and enterprises are facing the urgent need of digital transformation. The implementation of a digital plant production management system has become a major boost to industry transformation and development. Leveraging contemporary computer technology and integrating it with traditional manufacturing processes can enhance process intelligence and management efficiency. In pursuit of implementing such a system, our research has designed and developed a multi process manufacturing task management system - DigitalPlantMan for digital plant, utilizing cutting-edge software development frameworks like Spring Boot and Vue. This paper presents the step-by-step system development process which includes an analysis of system requirements, functional design, database design, and implementation of each system module. Finally, testing results indicate that the system facilitates efficient business collaboration on a unified platform, thereby assisting enterprises in enhancing their digital and intelligent manufacturing capabilities to achieve safety, greenness, efficiency, and flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, C.: The Model-View-ViewModel (MVVM) design pattern. In: Anderson, C. (ed.) Pro Business Applications with Silverlight 5, pp. 461–499. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4302-3501-9_13

    Chapter  Google Scholar 

  2. Blichfeldt, H., Faullant, R.: Performance effects of digital technology adoption and product & service innovation-a process-industry perspective. Technovation 105, 102275 (2021)

    Article  Google Scholar 

  3. Brittain, J., Darwin, I.F.: Tomcat: The Definitive Guide: The Definitive Guide. O’Reilly Media, Inc. (2007)

    Google Scholar 

  4. Cheng, J., Zhang, H., Tao, F., Juang, C.F.: DT-II: digital twin enhanced industrial internet reference framework towards smart manufacturing. Robot. Comput.-Integr. Manuf. 62, 101881 (2020)

    Article  Google Scholar 

  5. DuBois, P.: MySQL. Addison-Wesley (2013)

    Google Scholar 

  6. Han, X., Liu, Y., Zhang, X., Cui, S.: Application of equipment intelligent management system in the construction of intelligent factories in the chemical industry. Chem. Enterp. Manag. 114–116 (2022)

    Google Scholar 

  7. Li, J.Q., Yu, F.R., Deng, G., Luo, C., Ming, Z., Yan, Q.: Industrial internet: a survey on the enabling technologies, applications, and challenges. IEEE Commun. Surv. Tutor. 19(3), 1504–1526 (2017)

    Article  Google Scholar 

  8. Li, J.: Feasibility analysis of student management information system. Electron. Technol. Softw. Eng. 03, 237–242 (2023)

    Google Scholar 

  9. Li, Q., Tang, Q., Chen, Y., et al.: Research on the architecture, reference model, and standardization framework of intelligent manufacturing system. Comput. Integr. Manuf. (31), 539–549 (2018)

    Google Scholar 

  10. Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., Bigot, S.: Digital twin-enabled collaborative data management for metal additive manufacturing systems. J. Manuf. Syst. 62, 857–874 (2022)

    Article  Google Scholar 

  11. Liu, Z., Ye, K.: YOLO-IMF: an improved YOLOv8 algorithm for surface defect detection in industrial manufacturing field. In: He, S., Lai, J., Zhang, L.J. (eds.) METAVERSE 2023. LNCS, vol. 14210, pp. 15–28. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44754-9_2

    Chapter  Google Scholar 

  12. Medema, H., Savchenko, K., Boring, R., Ulrich, T., Park, J.: Human reliability considerations for the transition from analog to digital control technology in nuclear power plants. In: 11th Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT 2019, pp. 132–141 (2019)

    Google Scholar 

  13. Moshovos, A., Memik, G., Falsafi, B., Choudhary, A.: Jetty: filtering snoops for reduced energy consumption in SMP servers. In: Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture, pp. 85–96. IEEE (2001)

    Google Scholar 

  14. Ning, J.: Design of university task management system based on cloud platform and Vue. Electron. Technol. Softw. Eng. 14, 247–250 (2022)

    Google Scholar 

  15. Pashentsev, D.A., et al.: Digital software of industrial enterprise environmental monitoring. Ekoloji Dergisi (107) (2019)

    Google Scholar 

  16. Shan, X.: Design and implementation of a multimedia communication system for web users. Master’s thesis, Beijing University of Posts and Telecommunications (2019)

    Google Scholar 

  17. Tang, L., Ye, K.: DT-EEC: a digital twin-assisted end-edge-cloud collaboration architecture for industrial internet. In: 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), pp. 1638–1643. IEEE (2022)

    Google Scholar 

  18. Tian, H., Ye, K.: CEESys: a cloud-edge-end system for data acquisition, transmission and processing based on HiSilicon and OpenHarmony. In: He, S., Lai, J., Zhang, L.J. (eds.) METAVERSE 2023. LNCS, vol. 14210, pp. 3–14. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44754-9_1

    Chapter  Google Scholar 

  19. Wang, L.: Research on the improvement of gulf company’s factory operation management system for intelligent manufacturing. Master’s thesis, Yanshan University (2022)

    Google Scholar 

  20. Wang, Z., Li, P., Bao, Y., Li, J., Zhang, R.: Analysis and design of a tobacco sales queuing system. Comput. Knowl. Technol. 11(16), 84–87 (2015)

    Google Scholar 

  21. Webb, P., et al.: Spring boot reference guide. Part IV. Spring Boot features 24 (2013)

    Google Scholar 

  22. Zhang, Y.: Design of the database for the enrollment management system of sports majors in universities. Inf. Technol. 06, 42–45 (2014)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Key R&D Program of China (No. 2021YFB3300200), National Natural Science Foundation of China (No. 92267105), Guangdong Special Support Plan (No. 2021TQ06X990), Shenzhen Basic Research Program (No. JCYJ20200109115418592, JCYJ20220818101610023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejiang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, H., Wang, Y., Ye, K. (2024). DigitalPlantMan: A Multi Process Manufacturing Task Management System for Digital Plant. In: Ye, K., Zhang, LJ. (eds) Internet of Things – ICIOT 2023. ICIOT 2023. Lecture Notes in Computer Science, vol 14208. Springer, Cham. https://doi.org/10.1007/978-3-031-51734-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51734-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51733-4

  • Online ISBN: 978-3-031-51734-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics