Skip to main content

Optimized Edge-cCCN Based Model for the Detection of DDoS Attack in IoT Environment

  • Conference paper
  • First Online:
Edge Computing – EDGE 2023 (EDGE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14205))

Included in the following conference series:

  • 193 Accesses

Abstract

In the context of the Internet of Things (IoT), safeguarding against Distributed Denial of Service (DDoS) attacks is critical. This paper introduces an Optimized Edge-cCNN (Convolutional Neural Network) Model designed for robust DDoS detection in IoT environments. The model employs two specialized CNN layers to identify distinct DDoS attack types. To enhance its performance, we utilize the Cuckoo Search algorithm to fine-tune hyperparameters effectively. Our approach demonstrates superior accuracy compared to existing methods while remaining lightweight, making it suitable for resource-constrained edge devices. Through rigorous evaluation, our model exhibits its effectiveness in real-time DDoS threat mitigation. The Optimized Edge-cCNN Model presents an innovative solution for enhancing IoT security, combining deep learning and optimization techniques to combat evolving DDoS attacks effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Internet of things and wireless sensor network for smart cities. Int. J. Comput. Sci. 14, 50–55 (2017). https://doi.org/10.20943/01201705.5055

  2. Wireless connected smart microsystems. Sens. Mater. 447 (2018). https://doi.org/10.18494/sam.2018.1765

  3. Detection and prevention algorithm of DDoS attack over the IoT networks. Tem J. 899–906 (2020). https://doi.org/10.18421/tem93-09

  4. Abbas, N., Nasser, Y., Shehab, M., Sharafeddine, S.: Attack-specific feature selection for anomaly detection in software-defined networks. In: 2021 3rd IEEE Middle East and North Africa Communications Conference (MENACOMM), pp. 142–146. IEEE (2021)

    Google Scholar 

  5. Bak, N., Chang, B., Choi, K.: SmartVisual: a visualisation tool for SmartThings IoT apps using static analysis. IET Softw. 14, 411–422 (2020). https://doi.org/10.1049/iet-sen.2019.0344

    Article  Google Scholar 

  6. Chen, F., Luo, D., Xiang, T., Truong, H.: IoT cloud security review. ACM Comput. Surv. 54, 1–36 (2021). https://doi.org/10.1145/3447625

    Article  MATH  Google Scholar 

  7. Chen, F., Xiao, Z., Xiang, T., Truong, H.: A full lifecycle authentication scheme for large-scale smart IoT applications. IEEE Trans. Depend. Sec. Comput. 1 (2022). https://doi.org/10.1109/tdsc.2022.3178115

  8. Cvitić, I., Perakovic, D., Gupta, B.B., Choo, K.K.R.: Boosting-based DDoS detection in Internet of Things systems. IEEE Internet Things J. 9(3), 2109–2123 (2021)

    Article  Google Scholar 

  9. Dahiya, A., Gupta, B.B.: A reputation score policy and Bayesian game theory based incentivized mechanism for DDoS attacks mitigation and cyber defense. Futur. Gener. Comput. Syst. 117, 193–204 (2021)

    Article  MATH  Google Scholar 

  10. Doshi, R., Apthorpe, N., Feamster, N.: Machine learning DDoS detection for consumer Internet of Things devices. In: 2018 IEEE Security and Privacy Workshops (SPW) (2018). https://doi.org/10.1109/spw.2018.00013

  11. Fayyaz, U., Shah, G.: IoT DoS and DDoS attack detection using ResNet. In: 2020 IEEE 23rd International Multitopic Conference (INMIC) (2020). https://doi.org/10.1109/inmic50486.2020.9318216

  12. Hu, B., Gaurav, A., Choi, C., Almomani, A.: Evaluation and comparative analysis of semantic web-based strategies for enhancing educational system development. Int. J. Semant. Web Inform. Syst. (IJSWIS) 18(1), 1–14 (2022)

    Article  MATH  Google Scholar 

  13. Khader, R., Eleyan, D.: Survey of DoS/DDoS attacks in IoT. Sustain. Eng. Innov. ISSN 2712–0562 3, 23–28 (2021). https://doi.org/10.37868/sei.v3i1.124

  14. Khanam, S., Tanweer, S., Khalid, S.S.: Future of internet of things: enhancing cloud-based IoT using artificial intelligence. Int. J. Cloud Appl. Comput. (IJCAC) 12(1), 1–23 (2022)

    Google Scholar 

  15. Kiran, M.A., Pasupuleti, S.K., Eswari, R.: Efficient pairing-free identity-based Signcryption scheme for cloud-assisted IoT. Int. J. Cloud Appl. Comput. (IJCAC) 12(1), 1–15 (2022)

    Google Scholar 

  16. Kumar, R., Singh, S.K., Lobiyal, D., Chui, K.T., Santaniello, D., Rafsanjani, M.K.: A novel decentralized group key management scheme for cloud-based vehicular IoT networks. Int. J. Cloud Appl. Comput. (IJCAC) 12(1), 1–34 (2022)

    Google Scholar 

  17. Mishra, A., Gupta, N., Gupta, B.: Defense mechanisms against DDoS attack based on entropy in SDN-cloud using pox controller. Telecommun. Syst. 77, 47–62 (2021)

    Article  MATH  Google Scholar 

  18. Nagpal, N.: Analyzing role of big data and IoT in smart cities. Int. J. Adv. Eng. Manage. Sci. 3, 584–586 (2017). https://doi.org/10.24001/ijaems.3.5.29

  19. Quist, A.: Digital forensic challenges in internet of things (IoT). Adv. Multidiscip. Sci. Res. J. Publ. 1, 119–124 (2022). https://doi.org/10.22624/aims/crp-bk3-p20

  20. Raj, M.G., Pani, S.K.: Chaotic whale crow optimization algorithm for secure routing in the IoT environment. Int. J. Seman. Web Inform. Syst. (IJSWIS) 18(1), 1–25 (2022)

    Article  MATH  Google Scholar 

  21. Sadatacharapandi, T.P., Padmavathi, S.: Survey on service placement, provisioning, and composition for fog-based IoT systems. Int. J. Cloud Appl. Comput. (IJCAC) 12(1), 1–14 (2022)

    MATH  Google Scholar 

  22. Sarrab, M., Alshohoumi, F.: Assisted-fog-based framework for IoT-based healthcare data preservation. Int. J. Cloud Appl. Comput. (IJCAC) 11(2), 1–16 (2021)

    Google Scholar 

  23. Shah, Z., Ullah, I., Li, H., Levula, A., Khurshid, K.: Blockchain based solutions to mitigate distributed denial of service (DDoS) attacks in the Internet of Things (IoT): a survey. Sensors 22, 1094 (2022). https://doi.org/10.3390/s22031094

    Article  Google Scholar 

  24. Silva, F., Silva, E., Neto, E., Lemos, M., Neto, A., Esposito, F.: A taxonomy of DDoS attack mitigation approaches featured by SDN technologies in IoT scenarios. Sensors 20, 3078 (2020). https://doi.org/10.3390/s20113078

    Article  MATH  Google Scholar 

  25. Singh, A., Gupta, B.B.: Distributed denial-of-service (DDoS) attacks and defense mechanisms in various web-enabled computing platforms: issues, challenges, and future research directions. Int. J. Semant. Web Inform. Syst. (IJSWIS) 18(1), 1–43 (2022)

    Article  MATH  Google Scholar 

  26. Tiwari, A., Garg, R.: Adaptive ontology-based IoT resource provisioning in computing systems. Int. J. Semant. Web Inform. Syst. (IJSWIS) 18(1), 1–18 (2022)

    Article  MATH  Google Scholar 

  27. Ullah, I., Mahmoud, Q.: A two-level flow-based anomalous activity detection system for IoT networks. Electronics 9, 530 (2020). https://doi.org/10.3390/electronics9030530

    Article  MATH  Google Scholar 

  28. Wahab, O.A., Bentahar, J., Otrok, H., Mourad, A.: Optimal load distribution for the detection of VM-based DDoS attacks in the cloud. IEEE Trans. Serv. Comput. 13(1), 114–129 (2017)

    Article  Google Scholar 

  29. Wassan, S., et al.: Gradient boosting for health IoT federated learning. Sustainability 14(24), 16842 (2022)

    Article  MATH  Google Scholar 

  30. Zhang, Q., Guo, Z., Zhu, Y., Vijayakumar, P., Castiglione, A., Gupta, B.B.: A deep learning-based fast fake news detection model for cyber-physical social services. Pattern Recogn. Lett. 168, 31–38 (2023)

    Article  Google Scholar 

Download references

Acknowledgement

This research work is supported by National Science and Technology Council (NSTC), Taiwan Grant No. NSTC112-2221-E-468-008-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brij B. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, B.B., Gaurav, A., Chui, K.T., Arya, V. (2024). Optimized Edge-cCCN Based Model for the Detection of DDoS Attack in IoT Environment. In: Feng, J., Jiang, F., Luo, M., Zhang, LJ. (eds) Edge Computing – EDGE 2023 . EDGE 2023. Lecture Notes in Computer Science, vol 14205. Springer, Cham. https://doi.org/10.1007/978-3-031-51826-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51826-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51825-6

  • Online ISBN: 978-3-031-51826-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics